

The pendulum operations in India, 1903 to 1907
P. Lenox Conyngham, A. Strahan, Survey of India

Xibrare

of tbe

University of wisconsin

THE PENIUILUM APPARATUS.

Photogravare.
Survey of India Offices. Calouta. March. 1900

THE PENDULUM APPARATUS

Photegravure
Surver of India offices. Caleutta, March 190 H

CLOCK, FIASH BOX ANH ACCESSORIES.
\square Google

Suxtey of 気ndia.

PROFESSIONAL PAPER-No. 10.

THE

PENDULUM OPERATIONS IN INDIA
 1903 to 1907

BY
MAJOR G. P. LENOX CONYNGHAM, R.E., SUPERINTENDENT, SURVEY OF INDIA.
with an appendir by
A. STRAHAN,F.R.S.

PUBLISHED BY DIRECTION Or
COLONEL F. B. LONGE, R.E., SURVEYOR GENERAL OF INDIA.

printed at the office of the trigonometrical branch, survey of india.
1908.

TABLE OF CONTENTS.

| | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Preface | |
| Pıii | |

Chartre I.

The Observations at Kew and Greenwich.

(iv)

TABLE OF CONTENTS-(Continued).
 Chapter II.

The Operations from January to June 1904.

(V)

TABLE OF CONTENTS-(Continued).

(vi)

FIGURES AND PLATES.

$\left.\begin{array}{lllll}\text { Plate } & \text { I.—The Pendulums and their stand } & \ldots & \ldots & \ldots \\ \text { Plate } & \text { II.—The Clock, Flash-bor and accessories } & \ldots & \ldots & \ldots\end{array}\right\}$ Frontispiece

PREFACE.

This paper contains a detailed account of all the observations made with the Indian half-seconds pendulum apparatus from the date of its purchase in 1903 to the end of the season 1906-07.

A gravimetric survey of the whole country is the ultimate object of the operations, of which the first few are here described, and nothing less will serve to elucidate all the problems that it is sought to solve; but this is a far off ideal and as it is well to have some more immediate goal in view, to fix ideas and to give definiteness to the programme of work of each year, two primary problems were attacked in the first instance.

These were, to ascertain the extent to which visible excesses of mass, such as mountains, are compensated by deficient density; and to test with the pendulums the truth of the inferences drawn by Colonel Burrard from the Astronomical Latitudes and Longitudes, that is to say, to find out whether there exists a chain of excessive density running more or less parallel to the Himalayas, distant some 150 miles from them and extending from the Bay of Bengal to the Punjab.

Captain Basevi's celebrated observation in 1871, with the Royal Society's Pendulums, at Moré at an elevation of 15400 feet above the sea, gave a result which seemed to show that the mountain mass was entirely compensated by deficient density : that is to say, his value of gravity was the same as would have been expected if the observation had been made in a balloon floating at a height of 15400 feet above a plain at sea level. There are reasons however for doubting whether this observation was trustworthy. It was made under circumstances of great difficulty and Captain Basevi was in very bad health.

The story of how this indomitable observer lost his life while pushing on from More to a still higher altitude need not be retold here, but it is proper to remark that, though every care was taken by his successors in reducing the Moré observations, it is possible that had he lived he might have had suggestions to make which would have altered the value deduced from his work.

Colonel Burrard has shewn, in Professional Paper No. 5, that total compensation is incompatible with the deflections of the plumb-line revealed by the latitude observations at and near the foot of the hills. Archdeacon Pratt's theory of mountain compensation was in a large measure based on the smallness of the deflections observed at Kaliána, but Colonel Burrard has shewn that this is explained by the presence of a line of excessive density, in the position mentioned above, and that many other apparent anomalies, which were unknown to the archdeacon, may also be accounted for in the same way.

No station of altitude equal to that of Moré has been visited with the new apparatus, but five stations in the Himalayas and two in the Baluchistan hills are included in the present series, the highest being Sandakphu, 11766 feet.

At all these points a deficiency of density is revealed, but in no case does it amount to total compensation and at Sandakphu it is equivalent to not much more than one-third of the apparent mass. Under all the submontane and mountain stations there appears to be a deficiency which is nearly constant in amount and is not proportional to the height of the station; this applies not only to the Himalayan stations but to those on and at the foot of the Baluchistan ranges also.

Colonel Burrard's hidden chain has been crossed in two places and in each it has made its presence unmistakeably felt.

In the plains of Bengal its crest lies near the station of Kisnapur, (latitude $25^{\circ} \mathbf{2}^{\prime}$, longitude $88^{\circ} 28^{\prime}$) and in the Punjab somewhere between Ferozepore and Montgomery (about latitude $30^{\circ} 50^{\prime}$, longitude $74^{\circ} 30^{\prime}$).

Noteworthy features are the trough of great deficiency which lies at the foot of the mountains of Northern India, and the way in which this deficiency gradually diminishes and finally gives place to an excess of density at a distance of 100 to 150 miles from them. This is seen on five different lines, namely :-
(i.) On the line extending southwards from Rajpur to Gesupur:
(ii.) On the line from Siliguri to Kisnapur and Chatra:
(iii.) On the line from Pathankot to Ferozepore.

> These three lines start from the base of the Himalayas.
(iv.) On the line from Dera Gházi Khan near the base of the Suleman Mountains through Multán to Montgomery, and lastly (v.) there is the station of Sibi at the foot of the Baluchistan hills with Jacobabad 120 miles further from them.

These several ranges of hills are all of similar structure. It will be of great interest to ascertain whether the same features present themselves in the case of the mountains of Southern aud Central India which are of a different character. Observations which will throw light on this are in progress.

As far as the work has now advanced it will be seen that the theory of total compensation of mountain masses is not supported and that the truth of Colonel Burrard's deductions from the observed deflections of the plumb-line is confirmed.

But observations at stations further in among the hills are required before we can make any general statement as to the amount of compensation that affects the Himalayan masses as a whole, and numerous stations along and on both sides of the hidden chain must be visited to enable us to form a correct idea of its position and shape. With regard to the Himalayas 1 do not think that stations at great altitudes will be the best; the difficulties of carrying out observations of adequate accuracy in very exposed positions are enormous, and the important point is, in my opinion, to get away from the fringe of the hills rather than to get up as high as possible.

In carrying out these observations and in preparing this account of them I have received help from many quarters and I take this opportunity of tendering my most grateful acknowledgments.

(ix)

First and foremost I have to thank Colonel Burrard, to whom the inception of the undertaking is wholly due, for constant encouragement, advice and support which have smoothed many difficulties from my path.

Mr. Eccles has helped me much in preparing the account for the press and has given me the benefit of his knowledge in many ways. Captain H. M. Cowie has frequently assisted me in the observatory and has read many of the proofs.

My Assistant Babu Hanuman Prasad, who has been with me throughout the work in India, has done his share both of the observations and of the computations to my entire satisfaction ; the late Babu Shiv Nath Saha, Head Computer of the Trigonometrical Survey Office, on whom I have placed great reliance for many years, checked my figures; his successor Babu Ishan Chandra Dev, b.A., has made a great number of valuable suggestions and assisted by Babu Mukundananda Acharya has corrected all proofs.

In various parts of India I have been indebted to Officers of the Civil Service, of the Public Works Department,and of the Military Works Service and to others for the loan of rooms in which to erect the apparatus, and I have received much personal hospitality at their hands.

The list of those to whom my thanks are due would be a long one and I must confine myself to a general expression of gratitude for their many kindnesses.

December, 1908.
G. P. Linox Confngiam.

CHAPTER I.

The Pendulum Observations made at Kew and Greenwich Observatories in 1903.*

The pendulum observations of which an account is given in this Chapter had their origin in the decision of the Government of India to extend, with the aid of a new portable apparatus, the operations which were brought to a close in 1870.

Professor F. R. Helmert, Director of the Central Bureau of the International Geodetic Association, was asked for advice as to the form of apparatus to be acquired and he recommended the use of a half-seconds pendulum equipment as designed by Colonel von Sterneck. He further offered to obtain the instruments from Vienna, to have them fitted with the additions necessary for the determination of the flexure correction, to test the whole apparatus and to make determinations of the constants of the temperature and density corrections.

The India Office adopted Professor Helmert's suggestions and gratefully accepted the offer of his valuable assistance. The equipment was therefore ordered through the Geodetic Institute in Potsdam, where the observations for determining the instrumental constants were made by Professor L. Haasemann under Professor Helmert's direction.

In October 1902 Major Burrard and I happened to be on leave in England, and went to Potsdam in order to study the method of observing. We were most cordially received, and Professor Haasemann, who had had much experience in pendulum work, gave up the whole of his time to our instruction.

The apparatus was not quite complete at this time nor had the determinations of the constants been made, so at our departure we did not take the equipment with us, but left it to be sent over to England later on.

As the apparatus does not give the absolute value of the force of gravity, but only the

Base station.

 difference from that at a Base station, the next step was to choose a Base and there swing the pendulums.Kew Observatory was selected because it had been the Base Station of the earlier Indian series, and Dr. R. T. Glazebrook, F.R.S., Director of the National Physical Laboratory, most kindly gave his permission and promised all necessary assistance. Professor Helmert had asked that a fresh determination of the constants might be made at Kew as a check on the values obtained at Potsdam, and this also Dr. Glazebrook kindly undertook. In the meantime however the suggestion had been made by Mr. W. H. M. Christie, C.B., F.R.S., Astronomer Royal,

[^0]that the opportunity should be taken of making swings at Greenwich as well as at Kew so as to obtain a value of the difference in g at these observatories.

The Secretary of State for India sanctioned the addition of this work to the originally proposed standardisation and deputed Major Burrard and me to undertake it with the assistance of the Kew Staff.

The apparatus was made by E. Schneider of Vienna after Colonel von Sterneck's design.

The apparatus.

 The pendulums are four in number, all of precisely similar appearance and with very nearly equal times of vibration. Their numbers are 137, 138, 139 and 140. They are made of brass heavily gilded, and have agate edges on which to vibrate; each has a small vertical mirror securely fastened to its head just above the line of these edges.The stand on which the pendulums hang during the observation is solidly made of , brass in the form of a truncated cone with three large apertures in the conical surface. It rests on three foot-screws which are capable of being firmly clamped. The. stand carries a highly polished agate plane for the reception of the agate edges.

This plane is pierced by an oblong hole through which the head of the pendulum which is to be suspended is passed from underneath; after passage the pendulum is turned through a right angle so that the knife-edge bridging the hole, rests on the agate surface. In order to avoid accidental injury to the agates, such as might happen if the edges had to be placed on the plane by hand, the edges are divided into two portions, inner and outer, and stirrups are provided on which the operator places the latter in the first instance; then by the action of a slow-motion screw the stirrups are gently lowered from under the edges until the inner or true portions rest on the plane, the outer being entirely free.

In the base of the stand a lever is provided for starting the oscillation of the pendulum, it has an adjusting screw so that an oscillation of any desired amplitude can be imparted.

The pendulums swing in air at the natural pressure, but are protected by a cover from draughts.

The flash-box eonstitutes the other essential part of the equipment. It contains a contrivance whereby a shutter, moving up and down under the control of a break-circuit clock, allows a ftash of light to pass through a slit at every beat or every alternate beat. This flash of light is reflected by the mirror on the vibrating pendulum into a small telescope fixed on the top of the flash-box; the times at which the flash passes the horizontal wire in the field of the telescope correspond to the coincidences of the free pendulum with the clock pendulum; the intervals between such passages are therefore the coincidence intervals of the pendulums.

The coincidence interval of each of the pendulums under discussion with that of a sidereal clock is about 35 sec. This is connected with the time of vibration by the equation

$$
\begin{gathered}
s=\frac{c}{2 c-1} \\
\text { If } c=35 \text { sec., } s=0.507 \text { sec. approximately. }
\end{gathered}
$$

On the front of the flash-box there is a porcelain scale, graduated into divisions of 3 millimetres. By observing the reflection of this scale in the pendulum mirror and noting how many divisions pass over the central wire of the telescope as the pendulum vibrates, the amplitude of the vibration is determined, when the distance between the mirror and the scale is known. A convenient distance is about 2 metres and a convenient initial amplitude (semi-arc) of vibration is. fram 12 minutes to 20 minutes.

Besides the pendulum apparatus the equipment includes a clock with a half seconds The clock. pendulum, specially designed for portability. It has a couvenient arrangement whereby the pendulum can be lifted from its bearings and clamped to the back of the case, so that it need not be taken off for a journey.

The pendulum, made by Riefler of Munich, is of invar.
The break-circuit arrangement consists of a light lever fixed to one side of the clock case, which is lifted by a short arm on the pendulum as it approaches the end of its swing in that direction. The lever is adjustable so that the circuit may be broken for alonger or shorter fraction of a second at will.

The clock, made by Messrs. Strasser and Rohde of Glasshütte, is known as S.R. 238. This clock was not the only one used for timing the pendulums. Both at Kew and at Greenwich the standard clocks of the observatories were also connected to the flash-box, so that alternate observations eould be made on each pendulum. In this paper the clock at Kew is called "Morrison 8702" and that at Greenwich "Sidereal Standard" or "S.S". Two break-circuit chronometers were most generously lent by Messrs. T. Mercer \& Sons and by Mr. V. Kullberg respectively at a time when it was feared that S.R. 238 would not be ready.

That lent by Messrs. Mercer \& Sons was used at Kew for two sets of observations.
The equipment includes two pairs of centigrade thermometers for the determination of the temperature inside the pendulum cover. The same pair was used both at Kew and at Greenwich, nameły No: 105368 and No. 105369 by Negretti and Zambra.

The degrees are divided on the scale into fifths, and they were read to fiftieths by estimation. The corrections of these thermometers were determined at the National Physical Labosatory both before and after the pendulum observations.

A barometer and hygrometer were lent by the National Physical Laboratory.

THE CORRECTIONS TO THE OBSERVED TIME OF VIBRATION.

The corrections are five in number, viz :-

1. Reduction to a vacuum

2.	"	a temperature of $0^{\circ} \mathrm{C}$.
3.	an infinitely small arc.	
4.	"	sidereal seconds.
5.	\#	a rigid pillar and stand.

The reduction to a racuum, or correction for atmospheric density, is given by the expression

Reduction to a racuum

$$
-\frac{k^{\prime}(B+b)\left(1-\frac{3}{8} \frac{e}{B}\right)}{7.60+2 \cdot 7.9 t}
$$

where $B=$ height of barometer in observing room;
$b=$ reading of manometer attached to pendulum cover; (not used in these observations),
$e=$ elastic force of aqueous vapour,
$t=$ temperature inside the pendulum cover in degrees centigrade:
$k^{\prime}=$ a coefficient depending on the pendulum's shape, surface, etc:
The value of k^{\prime} was carefully determined at Potsdam by Professor Haasemann: He had the advantage of possessing two complete sets of instruments, and was thus able to swing two pendulums simultaneously, timing both by the same clock, and so arranging the observations,
as to cause the mean epochs of observation to coincide. The difference of the times of vibration thus obtained was free from the effect of unsteadiness in the rate of the clock.

From observations of all possible pairs of pendulums, under pressures varying from $350^{\mathbf{m m}}$ to 1180^{man} of mercury, he obtained equations whence the following results were deduced.

Pendulum 137	$k^{\prime}=$
138	$594 \pm 2 \cdot 5$
139	$606 \pm 6 \cdot 5$
140	606 ± 1.0
Mean	$=595$

In these numbers the unit is the 7 th decimal place of a sidereal second.
The observations at Kew for the determination of k^{\prime} were carried out by Mr. E. G. Constable.

No vacuum chamber had been supplied with the apparatus but one was specially made under Dr. Glazebrook's direction.

As only the one apparatus was available at Kew, consecutive observations of the same pendulum under different pressures had to be made and the clock's rate had to be considered invariable.

Observations were made at pressures of $395^{\mathrm{mm}}, 585^{\mathrm{mm}}$ and 775^{mm} and the results were as follows :-

Pendulum | 137 | $k^{\prime}=605$ |
| :--- | ---: |
| 138 | 591 |
| 139 | 621 |
| 140 | 603 |
| | Mean |$\quad=605$

Dr. Chree, who kindly reduced all the Kew observations, estimates that the error in the value of the constant for a single pendulum may. not improbably amount to 2 or 3 per cent.

The Kew and Potsdam sets of values therefore agree as well as could be expected.
In the reduction of the pendulum observations, which follow, the Potsdam values have alone been used. This is due to the circumstance that the Kew observations were made later and were not available when the computations were being carried out.

No appreciable effect on the difference between the times of vibration of a pendulum at Kew and Greenwich respectively would be produced by a change of 10 per cent in k^{\prime}, whereas here the difference between the means of the two sets is but 1.7 per cent.

The reduction to 0° Centigrade is sufficiently represented by the simple expression Reduction to 0° Temp. $\quad-k t$
where t is the temperature of the pendulum during the observation and k a factor depending on its coefficient of expansion.

Determinations of k were made both at Potsdam and at Kew. At the former place Professor Haasemann again took advantage of his second apparatus, by comparing the time of vibration of each of the pendulums at different temperatures, with that of a reference pendulum which was swinging in an adjoining room where the temperature was nearly uniform. As before, the same clock was used for both pendulums and thus the results were freed from the effects of variable clock rate.

At Potsdam the pendulums were swung in a special case or chamber in which the temperature was artificially raised; at Kew the whole room in which the observations were made was heated.

At both places the pendulums were swung in air at the natural pressure.
At Potsdam observations were made at $3^{\circ} \mathrm{C}$ and $44^{\circ} \mathrm{C}$ approximately; at Kew the temperatures were $7^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$.

The resulting values of k were as follows:-

		Potsdam	Kew
Pendulum	137	$49 \cdot 2 \pm 0 \cdot 1$	$48 \cdot 9$
"	138	$48 \cdot 9 \pm 0 \cdot 2$	$50 \cdot 8$
"	139	$49 \cdot 1 \pm 0 \cdot 2$	$48 \cdot 2$
"	140	$48 \cdot 9 \pm 0 \cdot 1$	$49 \cdot 6$
	Mean	$49 \cdot 0$	$49 \cdot 4$

The unit of these numbers is the 7 th decimal place of a second of time.
The mean of the readings of two thermometers attached to the stand, the bulb of one being some distance above the middle of the pendulum's stem and that of the other an equal distance below it, was accepted as the temperature of the pendulum.

The thermometers used at Kew were not the same as those used at Potsdam, the latter being considerably smaller than the former; the close agreement between the results given above is some evidence, even if not very conclusive, that during the observations the temperature of the pendulum was well represented by the mean of the two thermometer readings.

The observation of each pendulum does not last longer than an hour and the decrease
Reduction to an infinitely small arc. in arc between the beginning and end is not excessive; the reduction to an infinitely small arc is therefore given with sufficient accuracy by the expression

$$
-s \frac{a^{2}}{16}
$$

$$
\text { where } \quad \begin{aligned}
s & =\text { observed time of vibration } \\
& a
\end{aligned}
$$

Since the time of vibration $=0^{\circ} \cdot 507$ approximately, the correction to be applied on Reduction to sidercal time. account of a clock rate of one second per dien is

$$
\frac{1}{86400} \times 0^{8} \cdot 507=58^{8} \cdot 7 \times 10^{-7}
$$

Several methods of determining the correction requisite to reduce the observed time of Reduction to a rigid pillar. vibration to what it wonld have been on a perfectly rigid pillar and stand, have been devised.
In 1818 Kater, in a paper which he communicated to the Royal Society, alluded to the necessity of ascertaining that the stand on which his pendulum was swung was sensibly rigid; and the instrument which he employed for testing this consisted of a vertical rod, supported from below by a thin spring and carrying a moveable weight*. By adjusting the position of the weight the time of vibration of this inverted pendulum was made to coincide with that of the pendulum under observation, on the stand of which it was placed.

If the stand was being drawn to and fro by the swinging pendulum, even to a small extent, a visible vibration would in the course of a few minutes be set up, the amount of this induced vibration being a measure of the flexibility of the stand.

[^1]This idea has been gradually developed, and the apparatus which has been adopted for employment with this equipment is the latest form of device for giving effect to it. It is the invention of Professor R. Schumann of the Prussian Geodetic Institute. The necessary additions to the instrument to enable the method to be applied were made in Potsdam by Messrs. Töpfer \& Sohn under Professor Helmert's direction.

The method may be described as follows :-
Two pendulums which vibrate in equal times are suspended on the same stand so that their planes of vibration coincide; both are carefully brought to rest and then one (which will be called the driving pendulum) is set swinging with a considerable amplitude. The rapidity with which the second (which will be called the driven pendulum) takes up the oscillation from the first is a measure of the flexibility of the pillar and stand; the correction to be applied to the time of vibration is deduced from the results of the observation. In order to shield the driven pendulum from the influence of the air set in motion by the driving pendulum a screen is placed between them.

By a theoretical analysis Professor Schumann shows that for a moderate time from the commencement of the oscillation (with these pendulums about 30 minutes), the ratio of the amplitude of the two pendulums increases as the time, the expression being

$$
\frac{\phi}{\psi}=\frac{d l}{2 l} \sqrt{\frac{g}{l}} \times t
$$

where $\begin{aligned} \phi & =\text { amplitude of driven pendulum } \\ \psi & =\text { at time } t \\ d l & =\text { the small virtual ing increase in the length of the driving pen- } \\ l & =\text { dulum caused by the flexure of the stand. } \\ l & \text { the length of the pendulum. }\end{aligned}$
It is thus possible with a suitable apparatus to make observations whence $d l$ can be deduced, and thence immediately the increase in the time of the pendulum's vibration due to the flexure of the stand.

Equality in the vibration periods of the two pendulums is one of the necessary conditions, and in practice it is found convenient to use as the driver an auxiliary pendulum, heavier than those of the original set of four and with an adjustable bob. The extra weight is to increase the effect on the driven pendulum and thus render it easier to measure, and the adjustability is to enable it to be used with any of the four invariable pendulums, or indeed with any pendulum whose period is about half a secoud.

In order to allow of the simultaneous suspension of two pendulums a strong bracket was fitted to the head of the stand, bearing agate planes for the reception of the driven pendulum : means of raising and lowering the pendulum without jarring its edges were provided. When both pendulums are suspended their knife-edges are in the same horizontal plane, parallel to each other and about 3 inches apart.

Fixed to the head of the driving pendulum is an arm, equal in length to this space, which carries at its end a vertical mirror; thus when this pendulum is resting on the central agate plane and the driven pendulum on the bracket their two mirrors are side by side.

The observation consists of simultaneously measuring the amplitudes of the oscillations of the two pendulums. This is done by observing the reflections of the scale fixed to the front of the flash-box. As the amplitudes of the oscillations never exceed 2°, and as their ratio only is required, it is sufficiently accurate to use the scale readings instead of computing the angles.

The observation proceeds as follows :-
When the driven pendulum has been carefully brought to rest in its natural position, the driver is set swinging through a suitable arc: the time at which the oscillation begins is
noted and two minutes are allowed to elapse before the observations commence. During the third minute the amplitude of the driver is first noted then that of the driven and then that of the driver again; thus the amplitudes at a common epoch, $2 \frac{1}{2}$ minutes from the start, are measured: the fourth minute is allowed to pass, but during the fifth similar readings are made, aud so on until eight sets have been recorded.

Eight values of the ratio $\frac{\phi}{\psi}$ have now been obtained, each of which would give a value of $d l$, but the expression connecting these quantities is based on the hypothesis that the driven pendulum is at perfect rest when the driver begins to oscillate, a condition which may not be satisfied. Prof. Schumann therefore puts $\frac{\phi}{\psi}=C+D t$

$$
\text { where } D=\frac{d l}{2 l} \sqrt{\frac{g}{l}}
$$

Hence, combining any two of the observations we have

$$
\begin{array}{r}
\frac{\phi_{2}}{\psi_{2}}-\frac{\phi_{1}}{\psi_{1}}=\frac{d l}{2 l} \sqrt{\frac{g}{l}} \times\left(t_{2}-t_{1}\right) \\
\text { and } d l=\frac{\left(\frac{\phi_{2}}{\psi_{3}}-\frac{\phi_{1}}{\psi_{1}}\right)}{t_{3}-t_{1}} \times 2 l \sqrt{\frac{l}{g}}
\end{array}
$$

or, converting into terms of s the time of vibration common to both pendulums

$$
d l=\frac{\left(\frac{\phi_{2}}{\psi_{2}}-\frac{\phi_{1}}{\psi_{1}}\right)}{t_{2}-t_{1}} \times 2 g \times \frac{\frac{s}{}^{3}}{\pi^{3}}
$$

It is more convenient to find the increase in the time of vibration due to flexure than the virtual increase in the length of the pendulum,

$$
\begin{array}{ll}
\text { and as } & \frac{d s}{d l}=\frac{1}{2} \frac{\pi}{\sqrt{g l}} \\
\text { we have } d s= & \frac{\left(\frac{\phi_{2}}{\psi_{!}}-\frac{\phi_{1}}{\psi_{1}}\right)}{t_{2}-t_{1}} \times \frac{s^{2}}{\pi} .
\end{array}
$$

The extent to which the pillar yields is proportional to the horizontal pull of the knifeedge on the agate plane; therefore to obtain the quantity appropriate to the invariable pendulum, $d s$ must be multiplied by a factor equal to the ratio of the moments of the invariable and auxiliary pendulums about their knife-edges. An empirical factor depending on the individual peculiarities of each pendulum,-difference in knife-edge etc. - was also sought for, but it was found that for pendulums of this form none is necessary.

The moments of the pendulums were not known but their ratio was determined by the following simple method : the pendulums, suspended as for the flexure observation, were brought to rest and readings of the reflected scales were taken with the telescope and recorded. A thread was then tied lightly round the stems of the pendulums so as to deflect them inwards from the vertical. If the pendulums be then brought to rest, and if the thread by which they are tied be horizontal, the angles through which they have respectively been deflected are in the inverse ratio of the moments about the points of suspension. If the observation of the reflect.
ed scales be now repeated the differences between the first and second sets of readings are measures of the angles of deflection, and the inverse ratio of these differences is equal to the required ratio of the moments. By a few repetitions of this process a sufficiently accurate value of the moment ratio can be obtained.

The four pendulums are so similar that in practice it is unnecessary to determine the flexure correction for each separately. The auxiliary pendulum was adjusted to swing isochronously with No. 137 and the latter has always been used for the flexure observation. The ratio of the moments of these two pendulums is $0 \cdot 533$.

The correction to the time of vibration of one of invariable pendulums when swinging on the stand designed by Colonel von Sterneck-the stand being firmly clamped to a granite slab and the slab cemented to a solid masonry pillar some 20 inches high-is found to be about 38×10^{-7}. It varies slightly according to the tightness of the clamping and the quality of the pillar. 29×10^{-7} and 60×10^{-7} are the extreme values that have so far been found with this apparatus.

The probable error of a single determination is less than $\pm 1 \times 10^{-7}$, and that of the mean of four independent measures will not be larger than the probable error of other corrections.

The following is a specimen of the record of an observation for flexure and of the computation of the correction:-

Observation for Flexure.
Kew, October 16th, 1903. Observer E. G. Constable.

Auxiliary Pendulum started at $36^{\text {ma }} 20^{\circ}$								
No.	Pendulum	Time		Scale Readings.		Amplitude	Mean Amplitude	Ratio
		From	To	Above	Below			
1	$\begin{aligned} & \text { Auxy: } \\ & 137 \\ & \text { Auxy : } \end{aligned}$	$\begin{array}{lc}m & 8 \\ 38 & 20\end{array}$	$\begin{array}{cc}78 \\ \mathbf{3 9} & \mathbf{8 0}\end{array}$	$\begin{array}{r} 14 \% 3 \\ 0.2 \\ 14 \% \end{array}$	$\begin{array}{r} 14.2 \\ 0.0 \\ 14.1 \end{array}$	$28 \cdot 5$ 0.2 28.4	28.45 0.2	-0070
2	Auxy: 137 Auxy:	4020	4120	$\begin{array}{r} 14.0 \\ 0.3 \\ 14.1 \end{array}$	$\begin{array}{r} 13 \cdot 8 \\ 0 \cdot 2 \\ 13 \cdot 7 \end{array}$	$\begin{array}{r} 27.8 \\ 0.5 \\ 27.8 \end{array}$	$\begin{array}{r} 27.8 \\ 0.5 \end{array}$	$\cdot 0180$
3	Auxy: 137 Auxy	4220	4320	$\begin{aligned} & 14.0 \\ & 0.45 \\ & 13.9 \end{aligned}$	$\begin{array}{r} 13.7 \\ 0.4 \\ 13.6 \end{array}$	$\begin{gathered} 27.7 \\ 0.85 \\ 27.5 \end{gathered}$	$\begin{gathered} 27.6 \\ 0.85 \end{gathered}$	$\cdot 0308$
4	Auxy : 137 Auxy:	4420	4520	$\begin{aligned} & 13.7 \\ & 0.55 \\ & 137 \end{aligned}$	$\begin{array}{r} 13.4 \\ 0.5 \\ 13.4 \end{array}$	$\begin{aligned} 27 & \cdot 1 \\ 1 & \cdot 05 \\ 27 & \cdot 1 \end{aligned}$	$\begin{gathered} 27^{\circ} 1 \\ 1 \cdot 05 \end{gathered}$	$\cdot 0387$
5	Auxy: 137 Auxy:	4620	4720	$\begin{array}{r} 13.5 \\ 0.7 \\ 13.5 \end{array}$	$\begin{array}{r} 13.2 \\ 0.6 \\ 13.2 \end{array}$	$\begin{array}{r} 26 \cdot 7 \\ 1.3 \\ 26 \cdot 7 \end{array}$	$\begin{array}{r} 26 \cdot 7 \\ 1 \cdot 3 \end{array}$	$\cdot 0487$
6	Auxy: 137 Auxy	$48 \mathbf{2 0}$	4920	$\begin{array}{r} 13.3 \\ 0.8 \\ 13.2 \end{array}$	$\begin{array}{r} 13 \cdot 1 \\ 0 \cdot 8 \\ 13 \cdot 0 \end{array}$	$\begin{array}{r} 26.4 \\ 1.6 \\ 26.2 \end{array}$	$\begin{array}{r} 26.3 \\ 1.6 \end{array}$	$\cdot 0608$
7	Auxy: 137 Auxy:	5020	5120	$\begin{array}{r} 13.0 \\ 0.9 \\ 13.0 \end{array}$	$\begin{aligned} & 12.8 \\ & 0.95 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 25 \cdot 8 \\ & 1 \cdot 85 \\ & 25 \cdot 8 \end{aligned}$	$\begin{gathered} 25 \cdot 8 \\ 1 \cdot 85 \end{gathered}$	$\cdot 0717$
8	Auxy : 137 Auxy	5220	5320	$\begin{array}{r} 12.8 \\ 1.0 \\ 12.8 \end{array}$	$\begin{array}{r} 12.6 \\ 1.0 \\ 12.5 \end{array}$	$\begin{array}{r} 25.4 \\ 2 \cdot 0 \\ 25.3 \end{array}$	$\begin{gathered} 25 \cdot 35 \\ 2 \cdot 0 \end{gathered}$	$\cdot 0789$

Computation of Flexure Correction.

Numbers of the Observations	Difference of Ratios	Factor*	Flexure Correction
$5-1$	$\cdot 0417$	909×10^{-7}	37.9×10^{-7}
$6-2$	$\cdot 0 \not 228$	n	38.9
$7-3$	$\cdot 0409$	$"$	37.2
$8-4$.0402	n	36.5.

For the determination of the value of g at any station the programme of observation of The coincidence observation. each pendulum consists of observing two series of 10 consecutive coincidences each, with an interval of 50 coincidences between the last coincidence of the first series and the first of the second series.

Ten values of a sixty-coincidence interval are thus obtained, from the mean of which a value of the time of vibration can be derived with a probable error not greater than that of the corrections for temperature flexure, etc.

Each pendulum was swung twice in 24 hours, intervals of 12 hours separating the swings, and it was assumed that the mean rate of the clock during the swings was equal to that deduced from star observations made at the same hour each evening.

The observations were usually made from 9 a.m. to $1 \mathrm{p} . \mathrm{m}$. and from $9 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$. the mean of the two constituting a determination of the time of vibration: a single observation was not considered of any value.

A copy of the record of an observation is given as an example.

Station Greenwich.

Date, 24th October 1903. Clock, S. R. 238. Pendulum 140. Observer E.G. Constable.

Time	Barometer		Hygrometer		Arc		Pendulum Thermometers	
	, ${ }^{\text {h }}$	t	1)ry	Wet	Above	Below	Upper No. 105368	$\begin{gathered} \text { Lower } \\ \text { No. } 105369 \end{gathered}$
$\begin{array}{cr} h \\ 10 — & m \\ \hline \end{array}$	$\begin{gathered} i n . \\ 29 \div 727 \end{gathered}$	$48 \cdot 6 \mathrm{~F}$	$48 \cdot 4 \mathrm{~F}$	45.4 F	d $5 \cdot 7$	d $5 \cdot 7$	$\stackrel{\circ}{9.85} \mathrm{C}$	9.90 C
30	-728	$48 \cdot 7$	$\cdot 4$	$\cdot 4$	$4 \cdot 7$	4*7	$\cdot 85$	$\cdot 90$
59	$\cdot 726$	$48 \cdot 7$	$\cdot 4$	${ }^{5}$	3.9	3.9	. 85	$\cdot 90$
MEANS	$29^{\circ} 727$	48.7	48.4	$45{ }^{\circ}$	$4 \cdot 8$	$4 \cdot 8$	9'85	9*90

Factor $=\frac{s^{2}}{\pi\left(t_{2}-t_{1}\right)} \times \frac{m s}{m^{\prime} s^{\prime}}=\frac{(0 \cdot 507)^{2}}{3 \cdot 1416 \times 480} \times 0.533=0.0000909 . \quad t_{2}-t_{1}=8$ minutes.

Coincidences.

DESCRIPTION OF STATIONS.

At Kew the pendulums were swung in the north room of the small house which lies to the west of the main building.

The pendulums oscillated in the plane of the prime vertical approximately, the shape of the room not permitting of their being swung in the meridian. This room had not before been used for pendulum observations. The rooms in the basement of the main building, which had been occupied by the various observers from 1864 to 1900 , now contain the seismograph and are no longer available.

The new station is 100 feet 6 inches west of, 5 inches north of, and 6 feet 4 inches higher than that occupied by Mr. Constable in 1888 and by Mr. G. R. Putnam in 1900.

The co-ordinates of the new station are-

Latitude north	\ldots	$51^{\circ} 28^{\prime}$	$6^{\prime \prime}$.	
Longitude west	\ldots	0	18	48.
Height above mean sea level		23 feet.		

At Greenwich the station was the same as that occupied by Colonel von Sterneck, Mr. Putnam, Mr. Hollis and others. It is situated in the record room about 20 jards to the east of the prime meridian.

The pendulums oscillated in the plane of the meridian.
The co-ordinates of the station are :-

Latitude north	\ldots		51°	28^{\prime}	$38^{\prime \prime \prime}$
Longitude east	\ldots		0	0	1

Time signals were sent telegraphically every day from Greenwich Observatory to Kew at Clock rates at Kew. each place could be read off.

The true sidereal time at which the signal was sent out from Greenwich was communicated by the Astronomer Royal as soon as the star observations had been reduced, and thus the error of the Kew standard clock (French) was ascertained.

Comparisons between "French" and the clocks used for the pendulum observations, viz :Morrison 8702, S. R. 238 and Chronometer Mercer, were made by the method of coincidences using the comparing Chronometer Molyneux. These comparisons were made, by Mr. E. G. Constable, twice a day, soon after the time signals had been received from Greenwich.

For each night on which pendulum observations were made at Greenwich, the error of Clock rates at Green wich. the sidereal standard clock as derived from the star observations, was furnished by the Astronomer Royal.
S. R. 238 was compared chronographically with the Sidereal Standard several times in the 24 hours and its daily rate was deduced from the results.
'The Astronomer Royal kindly lent a very convenient chronograph for this purpose, and gave a permanent connection with the S.S. Clock, so that comparisons could be made at any time.

The following table shows the finally adopted clock rates on sidereal time for each period of 24 hours:-

Table I.

Station		From		To	Rate in 24 bours; $+=$ gaining ; $-=$ losing.				
				$\begin{aligned} & \text { Morrison } \\ & 8702 \end{aligned}$	Chronometer Mercer	S.S.	S. R. 238		
Kew		$\begin{array}{cc} 2 \text { p.m. June } & 22 \\ " & 23 \\ \text { " } & 24 \end{array}$			2 p.m. June ${ }^{\text {e }} 23$	$-\quad 0.30$$-\quad 0.32$	$+\quad 1.53$	8	\boldsymbol{s}
				, 24					
				" 25	$\begin{array}{r} -\quad 0.25 \\ +\quad 1.06 \end{array}$				
Kew		2 p.m. Octr. 14		2 p.m. Octr. 15					
				" 16	$+1.05$	$+1.11$			
Greenwich	...	8 p.m. Octr.	20	8 p.m. Octr. 21			- 0.06	-0.86	
		"	21	$\text { n } \quad 22$			$+0.02$	- 0.82	
		"	22	$; \quad 23$			- 0.07	-0.89	
		"	23	" 24		-	- 0.02	- 0.87	
Kew	...	2 p.m. Octr.		2 p.m. Octr. 28	$+0.85$			- 4.90	
		"	28	$\text { " } 29$	+ 1.00			- 4.85	
		"	29	" 80	$+0.80$			- $5 \cdot 00$	
		"	30	" 31	$+0.80$			-5.25	

N.B.-Between June and October the clock Morrison 8702 underwent some alterations,

At Kew the extreme recorded temperatures inside the pendulum cover during a visit Temperature conditions. (3 to 5 days) differed by $2^{\circ} \cdot 85 \mathrm{C}$.
The extreme range during the observation of a set of pendulums (4 to 5 hours) was $1^{\circ} .54 \mathrm{C}$; and the average $0^{\circ} 69 \mathrm{C}$. This change was almost invariably an increase of temperature with the progress of the observation, occasionally it was fluctuating in character but usually fairly regular.

The extreme range during the observation of one pendulum (about l hour) was $0^{\circ} \cdot 25 \mathrm{C}$ and the average $0^{\circ} \cdot 07 \mathrm{C}$, generally, but not invariably, an increasc.

At Greenwich the extreme recorded temperatures during the visit differed by $2^{0 .} 12 \mathrm{C}$. The extreme range during a set of pendulums was $0^{\circ} 49 \mathrm{C}$ with an average of $0^{\circ} .21 \mathrm{C}$, and the greatest range during the observation of one pendulum was $0^{\circ} 25 \mathrm{C}$ with an average of $0^{\circ} 06 \mathrm{C}$. The superiority of the temperature conditions at Greenwich over those at Kew was due partly to the use of electric light in place of gas, and partly to the fact that the room was larger.

The results of the observations.

The results of the observations together with the reductions are exhibited in Table II.
In the column headed "observer" the initial B denotes Major S. G. Burrard, R.E., C denotes Mr. E. G. Constable and L. C. Major G. P. Lenox Conyngham, R.E.

A word of explanation as to the clocks used and the long interval separating the first observations at Kew from the remainder is called for.

In June 1903 when the observers arrived at Kew and wished to begin work, the clock (S.R.238) which had been ordered as part of the equipment had not been received from the makers, and for the first set of observations at Kew, Morrison $8 \boldsymbol{r} 02$ was employed. While these observations were in progress the missing clock arrived, and when the observers moved to Greenwich they took it with them and crected it.

Two series of observations, one at Greenwich and one at Kew, were made with the aid of this clock, between June 29 and July 9, but were found, when reduced, to give very discordant and unsatisfactory results. Irregular clock rate seemed to be the source of evil and the clock was, at the makers' request, sent back for examination.

To reject all the observations made with this clock was the only course open. The Secretary of State for India was asked to sanction the repetition of the work and in October a new series was commenced. On this occasion it was determined, as a precaution, to supplement the observations by S.R. 238 with separate timings of the pendulums by the clocks of the observatories, the use of which was kindly allowed by the Director of the National Physical Laboratory and the Astronomer Royal respectively. But again when the observers wished to begin, S. R. 238 had not arrived. Being unwilling to rely on one clock only they then sought the loan of a break circuit chronometer and both Messrs. Mercer \& Co. and Messrs. Kulberg \& Co. came forward in the most generous way. The observations at Kew from October 14 th to 16 th were made with the clock Morrison and the Chronometer Mcrecr, but as S.R. 238 arrived on the 15 th it was taken to Greenwich and used both there and on the return visit to Kew.

Early in October Major Burrard had to embark for India, so the observations of the second part of the work were made by Mr. Constable and Major Lenox Conyngham.

Table II. Pendulum Observations at Kew.

Table II. Pendulum Observations at Kew.

Table II. Pendulum Observations at Greenwich.

Table II. Pendulum Observations at Greenwich.

Table II. Pendulum Observations at Kew.

Table II. Pendulum Observations at Kew.

	$\begin{aligned} & \text { d } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Coincidence Interval					Time of Vibration uncorrtd.		Corrections on account of						Time of Vibration corrected			
						Clock				Clock S. R. 238	Clock Mor- rison 8702	Clock Rate						$\begin{aligned} & \infty \\ & \text { مٌ } \\ & \text { مi } \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$			
						$\left\lvert\, \begin{gathered} \text { Mor- } \\ \text { rison } \\ 7802 \end{gathered}\right.$							\|			Mean					
1903		L. C.	137	4	${ }^{8} 8$	$\left\lvert\, \begin{gathered}s \\ 37 \cdot 061\end{gathered}\right.$		${ }_{13}^{\circ} \cdot{ }^{\circ} 1$	95°	[5068049	- $\begin{gathered}s \\ 5068379\end{gathered}$	+308	-47		-652		-564	-45	${ }^{506}$	s $\cdot 5067066$	$\begin{gathered} s \\ \cdot 5067079 \end{gathered}$
\%	$\stackrel{\square}{ \pm}$	C	138	2	$35 \cdot 998$	$85 \cdot 830$	15	13.01	95°	-5070428	$\cdot 5070762$				637	543		- 5069505	' 5069484	$\cdot 5069494$	
O゙く	$\frac{10}{20}$	L.C.	139	3	37'772	$237 \cdot 589$	15	$13 \cdot 21$	$\cdot 950$	$\cdot 5067076$	$\cdot 5067405$	308	47	6	647	576		- 5066110	$\cdot 5066084$	$\cdot 5066097$	
		C			$38 \cdot 204$	38-009		12.91		- 5066307	$\cdot 5066652$	308	47		633	576		$\cdot 5065355$	$\cdot 5065.345$	$\cdot 5065350$	
		L. C.	137	4	37-292	$237 \cdot 098$	15	11.89	$\cdot 956$	$\cdot 5067950$	$\cdot 5068309$	308	47	6	583	568	45	$\cdot 5067056$	$\cdot 5067060$	$\cdot 506705^{8}$	
$\stackrel{-1}{08}$	R	C	138	2	$36 \cdot 052$	$235 \cdot 870$	11	11.30	-960	-5070320	-5070679	308	47	3	554	549	45	$\cdot 5069477$	$\cdot 506948 \mathrm{I}$	$\cdot 5069479$	
$\stackrel{: ~}{0}$	\sim	C	139		$37 \cdot 832$	$37 \cdot 631$		11.58	-958	$\cdot 5066967$	$\cdot 5067331$	308	47	4	567	581	45	- 5066078	${ }^{5} 5066087$	$\cdot 5066083$	
		C	140	1	$38 \cdot 268$	38-071		11.19	.961	-5066192	$\cdot 5066541$	308	47	4	548	582		- 506532 I	$\cdot 5065315$	$\cdot 5065318$	
															Mean	Pendul		5066999	. 5066990	5066995	
															Gene	ral M		5066995	. 5066994	. 5066994	

In Table III the results obtained in Table II are arranged so as to show the behaviour of the individual pendulums.

Table III.—Time of Vibration.
Kew. (First Visit).
Determination A.

Clock		Morris	8702	
Pendulum	137	138	139	140
	$\begin{array}{r} 0.5067098 \\ \cdot 5067084 \end{array}$	$\begin{array}{r} 0 \cdot 5069519 \\ \cdot 5069506 \end{array}$	$\begin{array}{r} 0.5066108 \\ \cdot 5066096 \end{array}$	$\begin{array}{r} 0 \cdot 506.341 \\ \cdot{ }_{5065.361} \end{array}$
Mean 5067091	- 5069513	-5066102	$\cdot 5065.351$
$\begin{array}{ccl}\text { June } & 23 & \text { night } \\ \text { " } & 24 & \text { day }\end{array}$	$\begin{array}{r} \cdot 5067065 \\ \cdot{ }_{5067083} \end{array}$	$\begin{array}{r} \cdot 5069493 \\ \cdot 5069508 \end{array}$	- 5066106 - 5066117	$\begin{array}{r} \cdot 5065339 \\ \cdot \\ 5065355 \end{array}$
Mean	- 5067074	- 5069500	- 5066112	$\cdot 5065347$
$\begin{array}{ccl} \text { June } & 24 & \text { night } \\ \text { " } & 25 & \text { day } \end{array}$	$\begin{aligned} & \cdot 5067082 \\ & \cdot \\ & \cdot 5067083 \end{aligned}$	$\begin{array}{r} \cdot 5069515 \\ \cdot 5069513 \end{array}$	$\begin{array}{r} \cdot 5066114 \\ \cdot \\ -5066123 \end{array}$	$\cdot{ }_{\cdot}^{5065342} \cdot{ }_{5065344}$
Mean ..	$\cdot 5067083$	-5069514	- 5066118	-3065343
Mean of euch Pendulum	$\cdot 5067083$	- 5069509	- 5066111	- 5065347
CENERAL MEAN	0.5067012			
Differences from Mean	+ 71	+ 2497	- 901	- 1665

Kew. (Second Visit).
Determination B.
Determination C.

Clock	Morrison 8702				Chronometer Mercer			
Pendulum	137	138	139	140	137	138	139	140
Oct. 14 night " 15 day	$\begin{array}{\|c} 8 \\ 0 \cdot 5067110 \\ \cdot 5066938 \end{array}$	$\begin{array}{r} 0 \cdot 5069460 \\ \cdot 506948 \mathrm{I} \end{array}$	$\begin{gathered} s \\ 0 \cdot 5066072 \\ \cdot 5066092 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 506_{5315} \\ \cdot 5065316 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5067067 \\ .5067037 \end{gathered}$	$\begin{gathered} 8 \\ 0.5069509 \\ .5069483 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5066107 \\ \cdot 5066093 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5065335 \\ \cdot 5065322 \end{gathered}$
Mean ...	$\cdot 5067024$	$\cdot 5069471$	$\cdot 5066082$	- 5065315	$\cdot 5067052$	- 5069496	-5066100	$\cdot 5065329$
Oct. 15 night " 16 day	$\begin{array}{r} \cdot 5067042 \\ \cdot \\ 5067054 \end{array}$	- ${ }^{50694887} 5$	-5066063 - 5066066	$\begin{array}{r} \cdot 5065312 \\ \cdot 5065305 \end{array}$	- ${ }^{5067071}$ - ${ }^{5067058}$	- 5069453 - 5069472	- 5066106 - 5066089	$\begin{array}{r} \cdot \\ \cdot \\ \cdot 50653332 \end{array}$
Mean ...	- 5067048	-5069490	- 5066065	$\cdot 5065309$	$\cdot 5067064$	- 5069463	- 5066097	$\cdot 5065334$
Mean of each Pendulum	$\cdot 5067036$	-5069481	$\cdot 5066073$	$\cdot 5065312$	$\cdot 5067058$	- 5069480	$\bullet 5066099$	$\cdot 5065331$
GENERAL MEAN		0.506	6976			$\stackrel{8}{0.5066}$	6992	
Differences from Mean	60 $+\quad$	+ 2505	- 903	- 1664	+ 66	+ 2488	- 893	- 1661

Kew (Third Visit).
Determination D.
Determination E.

Clock	S. R. 238				Morrison 8702			
Pendulum	137	138	139	140	137	138	139	140
Oct. 27 night	$\begin{array}{r} 0 \cdot 5067055 \\ \cdot 5067076 \end{array}$	$\begin{gathered} x \\ 0 \cdot 5069473 \\ \cdot 5069475 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5066094 \\ \cdot 5066102 \end{gathered}$	$\left\lvert\, \begin{gathered} 8 \\ 0 \cdot 5065348 \\ \cdot 5065346 \end{gathered}\right.$	$\begin{gathered} s \\ 0.5067052 \\ \cdot 5067141 \end{gathered}$	$\begin{array}{r} 0 \cdot 5069473 \\ \cdot 5069481 \end{array}$	- 5066099 - 5066110	$\begin{gathered} s \\ 0 \cdot 5065340 \\ \cdot 5065344 \end{gathered}$
Mean ...	- 5067066	-5069474	- 5066098	$\cdot 5065347$	$\cdot 5067097$	$\cdot 5069477$	- 5066104	5065342
Oct. 28 night " 29 day	$\cdot 5067074$ $\cdot 5067044$	- 5069469 - 5069454	$\cdot 5066104$ $\cdot 5066064$	$\begin{array}{r}\cdot 5065330 \\ \cdot 5065318 \\ \hline\end{array}$	- 5067060 - 5067059	$\cdot{ }_{\cdot}^{5069471} \cdot{ }_{5069450}$	- 5066085 - 5066096	$\begin{array}{r} \cdot 5065329 \\ \cdot \\ 5065.328 \end{array}$
Mean ...	- 5067059	- 5069462	-5066084	- 5065324	- 5067060	- 5069460	-5066091	$\cdot 5065328$
Oct. 29 night . 30 day	$\cdot 5067079$ $\cdot 5067057$	$\begin{array}{r} \cdot 5069497 \\ \cdot 5069488 \end{array}$	- 5066115 - 5066108	\cdot \cdot $\cdot 5065342$.506535	- 5067069 - 5067064	$\cdot 5069471$ $\text { - } 5069480$	-5066:12 - 5066109	$\begin{array}{r} \cdot 5065.323 \\ \cdot 5065323 \end{array}$
Mean ...	- 5067068	- 5069493	- 5066111	- 5065334	- 5067066	-5069476	-5056110	$\cdot 5065323$
Oct. 80 night , 31 day	- 5067091 - $50670{ }^{6} 6$	- 5069505 - 5069477	-5066110 - 5066078	$\begin{aligned} & \cdot 5065355 \\ & \cdot \\ & 5065321 \end{aligned}$	- 5067066 - 5067060	$\cdot 5069484$	- 5066084 $\cdot 5066087$	$\begin{array}{r} \cdot 5065345 \\ \cdot \\ 5065315 \end{array}$
Menn ...	- 5067074	-5069491	$\cdot 5066094$	$\cdot 5065338$	$\cdot 5067063$	- 5069483	$\cdot 5066085$	$\cdot 50653.30$
Mean of each Pendulum	$\cdot 5067067$	$\cdot 5069480$	$\cdot 5066097$	$\cdot 5065336$	$\cdot 5067071$	$\cdot 5069474$	$\cdot 5066098$	${ }^{-5065331}$
GENERAL MEAN		$\stackrel{8}{0.506}$	66995			$\stackrel{8}{0.506}$	6994	
Differences from Mean	+ 72	+ 2485	- 898	- 1659	+ 77	$+2480$	- 896	- 1663

Table III.—Time of Tibration.

Greenwich.

Determination \boldsymbol{A}.
Determination B.

Clock	Sidereal Standard				S. R. 238			
Pendulum	137	138	139	140	137	138	139	140
Oct. " 20 21	$\begin{gathered} 8 \\ 0 \cdot 506710_{4} \\ .5067104 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5069524 \\ \cdot 5069530 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5066146 \\ \cdot 5066143 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5065374 \\ \cdot 5065375 \end{gathered}$	$\begin{gathered} 8 \\ 0.5067113 \\ \cdot 5067112 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5069533 \\ \cdot 5069514 \end{gathered}$	$\begin{gathered} 8 \\ 0 \cdot 5066142 \\ \cdot 5066127 \end{gathered}$	$\begin{array}{r} 8 \\ 0 \cdot 5065388 \\ \cdot 5065376 \end{array}$
Mean	$\cdot 5067104$	-5069527	- 5066145	$\cdot 5065374$	-506713	-5069523	- 5066135	$\cdot .065382$
$\begin{array}{cl}\text { Oct. } & 21 \text { night } \\ \text { " } & 22 \text { day }\end{array}$	$\begin{array}{r} \cdot 5067114 \\ \cdot \\ \cdot 5067106 \end{array}$	$\begin{array}{r} \cdot 5069519 \\ \cdot \\ \hline 5069553 \end{array}$	$\begin{array}{r} \cdot 5066143 \\ \cdot \\ \cdot 5066144 \end{array}$	$\begin{array}{r} \cdot 5065398 \\ \cdot \\ \cdot 5065368 \end{array}$	$\cdot{ }_{\cdot}^{5067101}$	- 5069502 - 5069548	$\begin{aligned} & \cdot 5066142 \\ & \cdot 5066127 \end{aligned}$	$\begin{array}{r} \cdot 5065367 \\ \cdot 5065378 \end{array}$
Mean	-5067110	- 5069536	- 5066144	$\cdot 5065383$	-5067102	$\cdot 5069525$	-5066135	- $\mathbf{0 6 5 3 7 2}$
Oct. " 22 night 23 day	$\begin{array}{r} \cdot 5067116 \\ \cdot 5067098 \end{array}$	$\begin{array}{r} \cdot 5069530 \\ \cdot \\ \cdot 5069527 \end{array}$	$\cdot \cdot{ }_{-5066148}$	$\begin{array}{r} \cdot 5065382 \\ \cdot \\ \cdot 5065373 \end{array}$	$\begin{array}{r}\cdot 5067095 \\ \cdot 5067098 \\ \hline\end{array}$	- 506953.3 - 50695^{26}	$\begin{array}{r} \cdot 5066136 \\ \cdot 5066142 \end{array}$	$\begin{array}{r} \cdot 5065,388 \\ \cdot \\ 5065372 \end{array}$
Mean	$\cdot 5067107$	- 5069529	- 5066151	- 5063378	-5067097	- $50695=9$	-5066139	- 5065380
$\begin{array}{cl}\text { Oct. } & 23 \\ \text { night } \\ \text { " } & 24 \\ \text { day }\end{array}$	$\begin{array}{r} \cdot 5067106 \\ \cdot 5067105 \end{array}$	$\begin{array}{r} \cdot 5069532 \\ \cdot \\ \cdot 506951.3 \end{array}$	$\begin{array}{r} \cdot 5066144 \\ \cdot \\ \hline 5066150 \end{array}$	$\begin{array}{r} \cdot 5065376 \\ \cdot 5065294 \end{array}$	- 5067109 - 5067085	- 5069525 - 5069497	- 5066139 - 5066126	$\begin{array}{r} \cdot 5065370 \\ \cdot \\ 5065366 \end{array}$
Mean	$\cdot 5067106$	- 5069522	$\cdot 5066147$	- 5065335	$\cdot 5067097$	- 5069511	. 5066133	5065368
Mean of each Pendulum	$\cdot 5067107$	- 5069529	$\cdot 5066147$	$\cdot 5065368$	$\cdot 5067102$	$\cdot 5069522$	$\cdot 5066136$	$\cdot 5065375$
CENERAL MEAN		$0^{8} 5067$	7038				5067034	
Differences from Mean	+ 69	+ 2491	- 891	-1670	+ 68	+ 2488	- 898	-1659

In the computation of Tables II \& III the temperature of the pendulums has been assumed equal to the mean of the readings of the thermometers. This assumption may be legitimate when the temperature of the air is steady, but when the latter is rising or falling the pendulums will unquestionably lag behind the thermometers in taking up the change, and consequently a further correction depending on the temperature gradient, will be required.

This correction may be called either the "lag" correction, or the "dynamical" temperature correction.

No experiments have as yet been made to determine the amount of this correction in the case of these pendulums, but with an almost identical apparatus belonging to the Prussian Geodetic Institute it was found to be $25^{8} \times 10^{-7}$ for a rate of change of temperature of $1^{\circ} \mathrm{C}$. per hour.

To obtain a view of the march of temperature during each of the sets of observations, and of the consequent lag correction, Table IV has been drawn up. In the column headed "mean temperatures" are shown, firstly, the mean of the temperatures of the first two pendulums of a set, and, secondly, that of the last two. (It is to be noted that in Table II, whence the temperatures are taken, the pendulums'are entered in numerical order ; the order of observation in the set is shown in the column to the right of the distinguishing numbers: thus 137. 3. means that No. 137 was observed third). The sign of the correction is easily understood when it is considered that with a rising temperature the pendulums are cooler than the thermometer readings would lead one to suppose.

T'able IV. Showing change of temperature during an observation of the pendulums and the deduced correction on account of the lag of the pendulums on the thermometers.

The correction has been assumed to be $25^{\circ} \times 10^{-7}$ for a change of $1^{\circ} \mathrm{C}$. per hour.

Applying the mean corrections for lag found in Table IV to the results given in Table III we obtain the final values of the time of vibration of the mean pendulum at Kew and Greenwich respectively, having 5 values of the former and 2 of the latter.

In Table V these values and their unweighted means are abstracted.
Table V. Times of Vibrations and unveighted means.
Kew.

Date	Clock	Times from Table III	Lag Correction	Corrected Time of Vibration
June 22-25	M. 8702	0.5067012	+4	0.5067016
October 14-16	M. 8702 Chronr. Mercer	$\begin{gathered} \cdot 5066976 \\ \cdot 5066992 \end{gathered}$	$\begin{aligned} & +4 \\ & +4 \end{aligned}$	-5066980 - 5066996
October 27-31	M. 8702 B. R. 238	- 5066994 - 5066995	$\begin{aligned} & +5 \\ & +5 \end{aligned}$	- 5066999 - 5067000
MEAN				0.5066998

Greenwich.

Date	Clock	Times from Table III	$\underset{\text { Correction }}{\text { Lag }}$	Corrected Time of Vibration
October 20-24	$\begin{gathered} \text { 8. 8. } \\ \text { B. R. } 288 \end{gathered}$	$0 \cdot 5067038$.5067034	$\begin{aligned} & +1 \\ & +1 \end{aligned}$	$\begin{gathered} \hline \cdot 5067039 \\ \cdot{ }_{5067035} \end{gathered}$
			MEAN	0'5067037

As however the results at Kew are discordant it is desirable to weight the individual Weights values before combining them.
The differences between the individual pendulums and the mean pendulum, which, on the supposition that the pendulums are invariable, should be constant, afford perhaps the best criterion of the relative weights of different sets of observations.

In order to test the invariability of the pendulums the differences from the mean are arranged in chronological order in Table VI; the mean of results obtained on the same date by different clocks has been entered instead of the individual values, as a discrepancy between simultaneous observations cannot be due to an alteration in a pendulum's length.

Table VI. Differences between individual pendulums and the mean pendulum, arranged chronologically.

Place	Date	137	138	139	140
Kow	June $22-25$	+71	+2497	-901	-1665
$" 1$	Oct: $14-16$	63	2497	898	1663
Greenwich	Oct: $20-24$	69	2490	895	1665
Kew	Oct: $27-31$	74	2483	897	1661

In the case of No. 138 there seems at first sight to be some evidence of progressive change, but on examining Table VII in which all the sets of differences are given, it will be seen that simultaneous observations occasionally disagree by amounts as large as the variation exhibited by No. 138, and it is therefore as probable that the differences are accidental as that they are due to an alteration in the pendulum's length.

Table VII. Differences between individual pendulums and the mean pendulum.

Station	$\left\lvert\, \begin{gathered} \text { Deter- } \\ \text { mination } \end{gathered}\right.$	137	138	139	140
Kow	A	+ 71	+2497	-901	-1665
"	B	60	2505	903	1664
"	0	66	2488	893	1661
"	D	72	2485	898	1659
"	E	77	2480	896	1663
Greenwich	A	69	2491	.891	1670
"	B	68	2488	898	1659
	Means	69	2491	897	1663

Table VIII. Deduction of weights and formation of general means.

Pendulum	Kew										Greenwich			
	A		\mathbf{B}		0		D		$\mathbf{5}$		A		B	
		∇	\checkmark	VT	∇	V	\checkmark	V	\checkmark	VV	V	V	\checkmark	TV
137	2	4	9	81	3	9	3	9	8	64	-	\bigcirc	1	1
138	6	36	14	196.	3	. 9	6	36	11	121	0	\bigcirc	3	9
139	4	16	6	36	4	16	1	1	1	1	6	36	1	1
140	2	4	1	1	2	4	4	16	\bigcirc	\bigcirc	7	49	4	16
[$\nabla \boldsymbol{\nabla}$] ...		60		314		38		62		186		85		27
Weight ...		5		1		8		5		2		4		12
Time of Vibration	$0 \cdot 5067016$		$0 \cdot 5066980$		$\begin{gathered} 8 \\ 0.5066996 \end{gathered}$		0.5067000		$0 \cdot 5066699$		$0 \cdot 5067039$		0.5067035	
Weighted Means	$0 \div 5067001$										$0: 5067036$			
Difference, Greenwich - Kow			$0^{s} 0000035$											

The Accuracy of the Observations.

The times of vibration of the mean pendulum at Kew and Greenwich respectively, which Behaviour of individual pendulums. are deduced in Table VIII, are the final results of the observations, but it will be of interest to deduce a result from each pendulum separately.

In Table IX the observed times of vibration of each pendulum are combined using the weights deduced in Table VIII, and the differences between the weighted means at Kew and Greenwich are shown. The values of the times of vibration are taken from Tables II \& III in which the lag correction has not been applied.

Table IX. Abstract of results by each pendulum and formation of ueeighted means and their differences.

Station and Determination		137		138		189		140	
		Time of Vibra. Weight		Time of Vibrn. Weight		Time of Vibrn. Weight		Time of Vibrn.	Weight
KEW	A	0.5067083	5	$\therefore 5069509$	5	$0 \cdot 5066111$	5	$\circ \cdot 5065347$	5
	${ }^{\text {B }}$	036	1	481	1	073	1	312	8
	-	058	8	480	8	099	8	331	8
	$\underset{E}{ }$	071	5 2	$\begin{aligned} & 480 \\ & 474 \end{aligned}$	5 2	097 098	5 2	$\begin{aligned} & 336 \\ & 331 \end{aligned}$	5 2
	Mean	$0^{8.5067066}$		0.5069486		$0^{8.5066100}$		$0^{8} 5065335$	
GREENWICH	${ }_{\text {A }}^{\text {A }}$	$\bigcirc{ }^{\circ} \times \begin{array}{r}5067107 \\ 102\end{array}$	3	$\circ \underset{522}{\circ} .$	1	$\stackrel{8}{8} \begin{array}{r} 566147 \\ 136 \end{array}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\circ \cdot{ }_{506} 0_{5.3} 68$ 375	1
	Mean	$0 \cdot 5067103$		0.5069524		$0^{8.5066139}$		$0_{0}^{8} \cdot 5065373$	
Difference Lag Correction		$0 \cdot 0000037$ -3		$0 \cdot 0000038$ -3		$0 \cdot 0000039$ -3		$0 \cdot 0000038$ -3	
Final Difference		$0^{8} \cdot 0000034$		$0^{8.0000035}$		$0: 0000036$		$0 \cdot 0000035$	

An attempt must now be made to estimate the accuracy of the corrected time of vibra-

Probable error of corrected time of vibration. tion of the mean pendulum. For this purpose Table X has been drawn up shewing the result of each double observation of each pendulum, and the sums of the squares of the residuals, thence the probable error of the corrected time of vibration of each pendulum and of the mean pendulum is deduced.

The result of a double observation, that is of one made by night and one by day, with an interval of twelve hours between them, should be, to a great extent, free from the systematic effects of variation in the rate of the clock, and is therefore more suitable for an investigation of accidental errors than the result of a single observation would be.

The figures for the individual pendulums are taken from Table III and those for the mean pendulum from Table II. The lag correction has not been applied.

Table X. Deduction of probable error.

Station \& Determi. nation	Date 1903	137	138	139	140	Mean Pendulum
		Mean of day and night observations	Mean of day and night observations	Mean of day and nigit observations	Mean of day and night 0 servations	Mean of day and night observations
$\underset{\mathbf{K}}{\substack{\text { Rew }}}$	June $\begin{array}{r}22.23 \\ 23 \cdot 24 \\ 24 \cdot 25\end{array}$	$\begin{array}{rr} s \\ 0 \cdot 5067091 \\ 7074 \\ 7083 \end{array}$	$\begin{array}{\|l\|l} 8 & \\ 0 \cdot 5069513 \\ 9500 \\ & 9514 \end{array}$	$\left\lvert\, \begin{array}{lr} s & \\ 0 \cdot 5066102 \\ 6112 \\ & 6118 \end{array}\right.$	$\begin{array}{r} s \\ 0^{\circ} 5065351 \\ 5.347 \\ 5.343 \end{array}$	$\left\lvert\, \begin{array}{rr} 8 \\ 0 \cdot 5067014 \\ 7008 \\ 7015 \end{array}\right.$
	Mean \& [rv]	$\begin{aligned} & s \\ & 0 \cdot 5067083145 \end{aligned}$	$\begin{aligned} & s \\ & 0 \cdot 5069509122 \end{aligned}$	${ }_{0}^{s} 5066111131$	$\begin{array}{cc} 8 \\ 0.5065347 & 32 \end{array}$	${ }^{5} \text { 0.5067012 } 29$
$\underset{\mathbf{B}}{\mathbf{K e w}}$	$\begin{array}{r} \text { Oct. } \begin{array}{r} 14-15 \\ 15-16 \end{array} \end{array}$	$\begin{array}{r} s \\ 0.306 ; 024 \\ 7048 \end{array}$	$\begin{array}{r} 8 \\ 0 \cdot 3069+71 \\ 9490 \end{array}$	$\begin{array}{rr} 8 \\ 0^{\circ} 5066082 \\ 6065 \end{array}$	$\begin{array}{r} s \\ 0^{\circ} 5065315 \\ 5309 \end{array}$	$\begin{array}{r} 8 \\ 0 \cdot 5066973 \\ 6978 \end{array}$
	Mean \& [v] $]$	$\begin{aligned} & s \\ & 0 \cdot 5067036288 \end{aligned}$	${ }^{8}$	$\stackrel{s}{f} 5066073145$	$\left\lvert\, \begin{array}{ll} s \\ 0.5065312 & 18 \end{array}\right.$	${ }_{0}^{8} .506697613$
$\underset{\mathbf{C}}{\mathrm{Kew}^{2}}$	Oct. $\begin{array}{r}14.15 \\ 15-16\end{array}$	$\begin{array}{rr} s & \\ 0 \cdot 506 ; 052 \\ 7064 \end{array}$	$\begin{aligned} & s \\ & 0 \cdot 5069+76 \\ & 9463 \end{aligned}$	$\begin{array}{r} s \\ 0 \cdot 5066100 \\ 6097 \end{array}$	$\begin{array}{r} s \\ 0 \cdot 5065.329 \\ 5334 \end{array}$	$\begin{array}{r} 8 \\ 0 \cdot 5066994 \\ 6990 \end{array}$
	Mean \& [Fr]	$\begin{array}{ll} s \\ 0.5067058 & 72 \end{array}$	$\begin{aligned} & s \\ & 0.5069480545 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \cdot 5066099 \end{aligned}$	$\begin{array}{ll} 8 \\ 0 \cdot 5065331 & 13 \end{array}$	$\begin{aligned} & 8.5066992 \\ & 0.506 \end{aligned}$
Greenwich A	$\text { Oct. } 20 \cdot 21$	$\begin{array}{\|l\|l} 8 & \\ 0 \cdot 5067104 \\ 7110 \\ 7107 \\ 7106 \end{array}$	$\begin{array}{r} 8 \\ 0^{\circ} 5069527 \\ 95.36 \\ 9529 \\ 9522 \end{array}$	$\begin{array}{r} 8 \\ 0^{\circ} \cdot 3066145 \\ 6144 \\ 6151 \\ 6147 \end{array}$	$\begin{array}{rr} s \\ 0 \cdot 5065.374 \\ 5.383 \\ 5.378 \\ & 5335 \end{array}$	$\begin{array}{rr} 8 & \\ 0 \cdot 5067038 \\ 7043 \\ 7041 \\ 7028 \end{array}$
	Mean \& [rv]	${ }^{8} \cdot 5067107 \quad 19$	$\begin{gathered} 8 \\ 0.5069529102 \end{gathered}$	$\begin{array}{ll} s \\ 0.5066147 & 29 \end{array}$	0.50653681450	${ }_{0}^{8} \cdot 5067038134$
$\begin{gathered} \text { Greenwich } \\ \text { B } \end{gathered}$	Oct.20.21 21.22 22.23 23.24	$\left\{\begin{array}{r} s \\ 0.5067113 \\ 7103 \\ 7097 \\ 7097 \end{array}\right.$	$\begin{array}{lr} s \\ 0.5069523 \\ 9525 \\ 9529 \\ 9511 \end{array}$	$\begin{array}{r} s \\ 0.5066135 \\ 6135 \\ 6139 \\ 6133 \end{array}$	$\begin{array}{r} s \\ 0^{\circ} 5065382 \\ 5372 \\ 5380 \\ 5368 \end{array}$	$\begin{array}{r} s \\ 0 \cdot 5067038 \\ 7034 \\ 7036 \\ 7027 \end{array}$
	Mean \& [vv]	${ }^{\delta}$	$\stackrel{s}{s} 0.5069522180$	${ }^{s} 506613620$	${ }^{s} 5065375132$	${ }_{0}^{8} 506703469$
$\begin{gathered} \text { Kew } \\ \mathbf{D} \end{gathered}$	$\begin{array}{r} \text { Oct. } 27-28 \\ 28.29 \\ 29.3 . \\ 30-31 \end{array}$	$\begin{array}{rr} 8 \\ 0.5067066 \\ 7059 \\ 7068 \\ 7074 \end{array}$	$\begin{aligned} & 8 \\ & 0^{\circ} 5069474 \\ & 9462 \\ & 9+93 \\ & 9491 \end{aligned}$	$\begin{array}{r} 8 \\ 0^{\circ} 5066098 \\ 6084 \\ 6111 \\ 6094 \end{array}$	$\begin{array}{rr} s \\ 0.5063 .347 \\ 5.324 \\ 5334 \\ 5338 \end{array}$	$\begin{array}{r} 8 \\ 0.5066996 \\ 6982 \\ 7001 \\ 6999 \end{array}$
	Mean \& [Vr]	$0^{s} 5067067115$	${ }^{\prime} \cdot 5069480650$	${ }^{8} 5066097375$	${ }^{8} 0.5065336273$	${ }^{8} \cdot 5066995222$
$\underset{\mathbf{E}}{\mathbf{K o w}}$	$\begin{array}{r} \text { Oct. } 27-28 \\ 28-29 \\ 29-30 \\ 30-31 \end{array}$	$\begin{array}{rr} s \\ 0 \cdot 5067097 \\ 7060 \\ 7066 \\ 7063 \end{array}$	$\begin{array}{\|r} 8 \\ 0.5069477 \\ 9460 \\ \\ 9476 \\ 9483 \end{array}$	$\begin{array}{r} 8 \\ 0.5066104 \\ 6091 \\ 6110 \\ 6085 \end{array}$	$\begin{array}{r} 8 \\ 0 \cdot 5065342 \\ 5328 \\ 5.323 \\ 53.30 \end{array}$	$\begin{array}{r} s \\ 0.5067005 \\ \mathbf{6 9 8 5} \\ 6994 \\ 6990 \end{array}$
	Mean \& [vr]	$0^{s} \cdot 5067071886$	$\stackrel{8}{0} 5069474290$	${ }_{0}^{s} 5066098398$	${ }^{5} \cdot 5065331 \text { 195 }$	$\begin{aligned} & 8 \\ & 0.5066994218 \end{aligned}$
$\pm[\mathbf{v}]$		1696	2070	1103	2113	693
p.e. of mean of day and night observations		± 6.9	± 77	$\pm 5 \cdot 6$	$\pm 7 \cdot 8$	± 4.4

Probable error $=0.6745 \quad \sqrt{\frac{\overline{\sum[v v]}}{n-m a}}$
Where $n=$ total number of values
$m=$ number of groups

Two points are now worthy of attention; the first is that the several values of the time of vibration obtained at Kew differ by considerably more than the probable errors would lead one to expect.

The second point is that the probable error of a result by the mean pendulum is $\pm \mathbf{4 . 4}$, whereas if we deduce it from the probable errors of the single pendulums we have

$$
\begin{gathered}
\frac{1}{4} \sqrt{(6 \cdot 9)^{2}+(7 \cdot 7)^{2}+(5 \cdot 6)^{8}+(7 \cdot 8)^{2}} \\
= \pm 3 \cdot 6
\end{gathered}
$$

The excess of the value $4 \cdot 4$ over $3 \cdot 6$ is due to the fact that all the pendulums are liable to some influence which remains constant throughout the set, but differs from day to day. It may be safely surmised that errors in the adopted clock rate are the most potent factor in this case.

To investigate the discrepancies between the several Kew results, Table XI has been formed wherein all the observations are treated as one series.

Table XI. Deduction of prabable error of time of vibration of mean

 pendulum at Kew.| Observed . time of vibration | V | W |
| :---: | :---: | :---: |
| 8 | | |
| 0.5067014 | 19 | 361 |
| -5067008 | 13 | 169 |
| -5067015 | 20 | 400 |
| -5066973 | 22 | 484 |
| -5066978 | 17 | 289 |
| -5066994 | 1 | , |
| - 5066990 | 5 | 25 |
| - 5066996 | 1 | 1 |
| -5066982 | 13 | 169 |
| $\cdot{ }^{-5067001}$ | 6 | 36 |
| -5066999 | 4 | 16 |
| - 5067005 | 10 | 100 |
| - 5066985 | 10 | 100 |
| -5066994 | 1 | 25 |
| - $506699{ }^{\circ}$ | 5 | 25 |
| $0^{5} 5066995$ | [Vr] | 2177 |

Probable error of single value $=0.6745 \sqrt{\frac{2177}{14}}= \pm 8.4$
Probable error of mean $= \pm \frac{8 \cdot 4}{\sqrt{15}}= \pm 2 \cdot 2$.
Here the probable error of a value of the time-of vibration of the mean pendulum is $\pm 8 \cdot 4$ instead of $\pm 4 \cdot 4$, and this difference shows that a large proportion of the total error is systematic.

It is difficalt to account for the discrepancies between the several results at Kew. If there were discrepancies between the different visits but none between the results of simultaneous observations, one would suspect either the flexure correction or the thermometers, imagining perhaps that the zero errors of the latter were changing; but the comparisons of the thermometers with the standards at Kew , and the severe tests to which the method of determining the flexure has been subjected at Potsdam, give us confidence in the corrections applied, and moreover errors in these corrections would not account for the difference between the two results obtained from simultaneous observations during the second visit to Kew.

The difference between these two values indicates that the clock rate is the source of error, for, whilst the clocks employed were different, all corrections were identical in these two cases. It is true that the rates of the clocks depended on the same star observations, on the same time signals, and on comparisons made by the same observer, so that a systematic error in one of the adopted values can hardly be credited. But there is another point to be considered in this connection.

Any variation in the retardation between the break of circuit in the clock and the action of the flash-lever would have the same effect as a change in the clock rate: thus if we suppose that this retardation amounted to $0^{s} \cdot 01$ during the observation of the first series of coincidences, and to $0^{8} .015$ during the second series; then, since about 35 minutes separate the two series, we should have an apparent losing rate of $0^{\circ} \cdot 005$ in 35^{m}, or of $0^{\circ \cdot} \cdot 2$ per day, which corresponds to a correction of 12×10^{-7} in the time of vibration. In the standard clock, Morrison 8702, electrical contact is made for a very small fraction of each second, and to obtain distinct flashes it was necessary to use great care in adjusting the balance between the spring and the electro-magnet which control the lever of the flash-box. Under these conditions it is conceivable that small changes in the attracting power of the magnet, due to an increase in the residual magnetism of the core, or to polarization of the battery, or to change in the resistance of the coils of the magnet through change of temperature, or to other such cause, may result in the armature being held a little longer or released a little sooner during the second series of observations than during the first.

The difficulty of adjusting the balance alluded to above was greatest when it was necessary, as during the second and third visits, to secure a position in which the flash-lever would respond to either of the two clocks.

The low weights of the results obtained by the Morrison Clock when used in conjunction with another confirm the idea that on these occasions some additional cause of uncertainty was at work.

Reviewing the results of Tables \mathbf{X} and XI we may conclude that the probable error of the time of vibration of the mean pendulum, deduced from two sets of observations separated by an interval of 12 hours, will in general be

$$
\text { not less than } \pm 4.4 \text { nor greater than } \pm 8.4
$$

To deduce the probable error of the mean of all the sets of observations at Kew and Greenwich respectively, we may have recourse to Table VIII where the various results and their weights are given.

In Table XII the figures required are repeated.
Table XII. Deduction of probable error at Kew.

Probable error of result of unit weight

$$
=0.6745 \sqrt{\frac{1779}{4}}= \pm 14.2
$$

Probable error of mean result

$$
= \pm \frac{14 \cdot 2}{\sqrt{21}}= \pm 3 \cdot 1
$$

For Greenwich we may assume that the probable error of a result of unit weight is the same as at Kew, and the sum of the weights being 16 on the same scale we may take the probable error of the mean to be

$$
\pm \frac{14 \cdot 2}{\sqrt{16}}= \pm 3 \cdot 6
$$

Thus we have finally the following values:-
Time of vibration of mean pendulum at KEW $\quad=0^{3} \cdot 5067001 \pm 3^{.1} \times 10-7^{\circ}$
$\begin{aligned} \prime \quad \text { at CREENWICH } & =0.5067036 \pm 3.6 \times 10-7 \\ \text { difference } & =0.0000035 \pm 4.5 \times 10-7\end{aligned}$

The final values of g at Kew and Greenwich.
The value of g at Kew may be assumed to be

$$
\frac{c m}{981 \cdot 200} \text { * }
$$

Hence, using the formula

$$
s^{2} g=s_{0}^{2} g_{0}
$$

or more conveniently, for small variations of s,

$$
g=g_{0}-2 g_{0} \times \frac{s-s_{0}}{s_{0}}
$$

where s_{0} and g_{0} are the values of the time of vibration and the acceleration of gravity at the station where both are known, and s and g those at any other station where s alone is known,
we have at Greenwich

$$
\begin{aligned}
g & =981 \cdot 200-1962.4 \times \frac{35 \pm 4 \cdot 5}{.5067001} \times 10^{-7} \\
& =981 \cdot 200-0.014 \pm 0.002 \\
& =981 \cdot 186 \pm 0.002
\end{aligned}
$$

[^2]Theoretical values of g.
It will now be of interest to compare the theoretical values of g with the results of the observations.

In forming these values it is convenient to divide the process into five steps, each producing a correction to the fundamental value of the acceleration due to gravity at a place in latitude 0°, at sea level, far from the neighbourhood of hills or valleys, and where the geological strata have a density equal to the mean surface density of the earth. This fundamental value is taken by Professor Helmert to be 978 centimetres, and his expression for the value at sea level in latitude ϕ is

$$
978\left(1+0.005310 \sin ^{2} \phi\right): \text { this quantity is called } \gamma_{0}
$$

The corrections to γ_{0} are :-

1. For height above sea level
... $-\gamma_{0} \frac{2 h}{R}$
2. For the mass between sea level and the station

$$
\ldots \quad+\gamma_{0} \cdot \frac{3}{4} \cdot \frac{h}{R}
$$

3. \dot{A} geological correction to allow for the actual
density of the subjacent rock $\quad . . \quad \ldots \quad . . \quad-\gamma_{0} \cdot \frac{3}{2} \cdot \frac{h^{\prime}}{R} \cdot \frac{\delta-\theta}{\Delta}$
4. A correction taking account of the actual conformation of the surrounding country, which in the above expressions has been assumed to be an extensive plain: this is called the orographical correction. It is inappreciable both at Kew and Greenwich.

In the above, $h=$ height of station above sea level
$h^{\prime}=$ thickness of surface strata of low density
$R=$ mean radius of the earth $=21,000,000$ feet.
$\Delta=$ mean density of the earth $=5 \cdot 6$
$\delta=$ mean surface density $=2.8$
$\boldsymbol{\theta}=$ actual density of subjacent strata.
An examination of Mr. Strahan's interesting analysis of the geology of the strata underlying the observatories, reveals that under Kew there are 1140 feet of rock of average specific gravity 2.06-including 150 feet of London Clay-and 97 feet of Limestone, or in all 1237 feet of strata before the Palæozoic floor is reached.

At Greenwich the London Clay and Limestone are absent, and the estimated depth of the Palæozoic floor is 933 feet.

Therefore correction 3 becomes

$$
\begin{array}{lllll}
\text { For Kew } \quad \ldots . & \ldots & \ldots & -981 \cdot \frac{3}{2} \cdot \frac{1140}{21,000,000} \cdot \frac{2 \cdot 8-2 \cdot 06}{5 \cdot 6}=-0^{c m} \\
\text { For Greenwich } & \ldots & \ldots & -981 \cdot \frac{3}{2} \cdot \frac{0.011}{21,000,000} \cdot \frac{2 \cdot 8-2 \cdot 06}{5 \cdot 6}=-0.009
\end{array}
$$

For convenience the latitudes and heights of the stations of observation are here repeated.

	Latitude			Height	
Kew.	51°	28^{\prime}	$6^{\prime \prime}$	23	feet
Greenwich	51	28	38	155	,

Table XIII. Values of the corrections and of the resulting values of g after the application of each.

Corrections		Kew		Greenwich		Difference in g Kow-Greenwich
		Amount of correction	Value of g	Amount of correction	Value of g	
Latitude	...	$\begin{array}{r} c m \\ +\quad 3.178 \end{array}$	$\mathrm{cm}_{\mathrm{cm} \cdot 178}$	$\begin{aligned} & c m \\ + & 3.179 \end{aligned}$	$9 \mathrm{~cm}$	$\begin{gathered} c m \\ -\quad 0.001 \end{gathered}$
Height	...	-0.002	$\cdot 176$	-0.015	$\cdot 164$	+ 0.012
Mass	...	+0.001	$\cdot 177$	$+0.006$	- 170	+ 0.007
Geological	...	-0.011	- 166	-0.009	$\cdot 161$	+ 0.005
Orographical	...	0	$\cdot 166$	\bigcirc	-161	+ 0.005

Thus the final theoretical values of g are : -

	c
at Kew	$981 \cdot 166$
,, Greenwich	$981 \cdot 161$

whereas the observed values are:-

$$
\begin{array}{ll}
\text { at Kew } & 981 \cdot 200 \\
, \text { Greenwich } & 981 \cdot 186
\end{array}
$$

The observed values are thus, in both cases, slightly in excess of the calculated values, and the observed difference between them is greater than the calculated difference.

The difference in the values of g at Kew and Greenwich has been determined several times : the various results obtained are here collected.

Table XIV. Difference between g at Kew and g at Greenwich.

Date	Observers	Method	Kow-Greenwich
$\begin{aligned} & 1831 \\ & 1873 \end{aligned}$	Sabine. Heaviside	By determinations of length of seconds pendulums	$\begin{gathered} c m \\ +\quad 0.069 \end{gathered}$
1881	Herschel	Kater's invariable pendulume Nos. 4 and 6	$\begin{gathered} c m \\ +\quad 0.038 \end{gathered}$
1888	Constable, Hollis	Kater's invariable pendulums Nos. 4, 6 and 11	$\begin{gathered} \mathrm{cm} \\ +\quad 0.028 \end{gathered}$
1900	Putnam	Tbreo half-seconds pendulums	$\begin{gathered} c m \\ +\quad 0.012 \end{gathered}$
1903	Burrard, Constable, Lenox Conyngham	Four half-seconds pendulums	$\begin{gathered} c m \\ +\quad 0.014 \end{gathered}$

It is satisfactory to note that the results obtained with the modern form of apparatus agree well with each other and do not greatly differ from the value which theory demands.

This encourages the hope that the many uncertainties which have hitherto surrounded pendulum observations have been to a large extent eliminated, and that henceforward the pendulum may prove as satisfactory in practice as it has always been attractive in theory.

APPENDIX то CHAPTER I.
 On the Geology of the Strata underlying Kew and Greenwich Observatories, and on the specific gravities of the rocks of which the Strata are composed

BY
A. STRAHAN, F.R.S.

Kew Observatory stands on the right bank of the Thames, on a terrace of gravel which averages 21 feet in height above Ordnance Datum.

A well and borehole were sunk close to the same bank of the Thames at a point 160 yards below Richmond Bridge and 33 yards from high-water mark. The well is three quarters of a mile distant from the Observatory in a direction S. 22° E., and its top is 17 feet above Ordnance Datum. The Tertiary strata are nearly horizontal, as is proved by the fact that the top of the Chalk lies at nearly the same level in the well mentioned, in another at the old Richmond waterworks, and in a third at the Star and Garter Hotel. The section proved, therefore, is likely to correspond closely with that which underlies the Observatory. The following account is taken from a paper by Professor Judd* and from the Geology of London (Memoirs of the Geological Survey) by Mr. W. Whitaker. Prominence however has been given to the lithological characters of the strata in preference to the geological grouping.

[^3]In the Limestone, at 1203 and 1210 feet depth, water was struck which rose to 46 feet from the surface, and lower down springs were met with a head of water sufficient for a rise of 126 feet above the surface.

The temperature at the bottom was 763° Fahr., the average increase being 1° for 54.09 feet of descent.

The strata below the depth of 1237 feet were described in the works referred to as being of doubtful age, and were temporarily called "Poikilitic", but an opinion prevailed among those who took part in the discussion that they belonged to the Old Red Sandstone. This view is supported by their character, by the fact that they dip at an angle of about 30°, whereas the Secondary rocks above them are nearly horizontal, and by their corresponding in depth to the position of the Palæozoic floor as proved in other borings in the south-east of England (see Map, Figure 1). The arguments against their being of Old Red Sandstone age are given in full by Professor Judd in the papers alluded to.

The Kew section, as estimated on the data given above, will be found drawn to scale in Figure 2.

Greenwich Observatory is situated at a height of 155 feet above Ordnance Datum on the margin of a tract of Oldhaven Beds. These strata form a gently undulating plateau, rising at a gentle angle northwards. They terminate in that direction in a bold scarp, on a projecting shoulder of which the Observatory stands. In the steep slopes which lie east and north of the building the Woolwich and Reading Beds, the Thanet Sand and the Chalk crop out from beneath the Oldhaven Beds.

A well in the garden of the Observatory is said to have reached the top of the Chalk at 75 feet depth.* The top of the well is about 10 feet below the site of the Observatory, or about 145 feet above Orduance Datum. The top of the Chalk must therefore lie at a depth of about 85 feet below the Observatory.

The nature of the strata composing these 85 feet can be inferred from other wells in the neighbourhood.

A well at Greenwich Hospital, 770 yards to the north-west of the Observatory yields the following details :-*

Made ground

		Thickness		Depth from surface	
		ft.	in.		
...	...	11	0	11	0
...	...	33	0	44	0
...	...	4	10	48	10
...	...		8	49	6
...	...	4	0	53	6
\cdots	...	6	0	59	C
...	...	4	0.	63	6
...	...	4	0	67	6
...	...	55	10	123	
...	...	1	0	124	4

Thanet sand (water)	55	10	123	4
Bed of flints	1	0	124	4

The strata vary in detail, but the occurrence of pebble-beds in the Oldhaven and Woolwich Beds, and of bands of clay in the latter is a fairly constant feature. In default of more precise information the lower 85 feet of this section may be taken to represent the strata which rest upon the Chalk under the Observatory.

The thickness of the Chalk must be estimated from more distant sources.

[^4]

The sites of boring are shewn thus
The depth of the paleosuic $100 r$ below O.D. where proved 25 given in feet thus 1056
The depth of borings wheh did not reach paleosoic rooks is given in feet thud (1905)
A contiour-lize on the palmozaic floor at 1000 feet below O.D. is shewn thus.

Fig. 2

At Mile End a well was sunk for the Albion Brewery at 172 Whitechapel Road.* It reached the top of the Chalk at a depth of 201 feet, and its bottom at 855 feet, proving its thickness to be 654 feet. The Chalk contained flints and layers of flint in the upper 259 feet. The remainder was hard and flintless, becoming marly towards the bottom. This well is situated 3 g miles from the Observatory in a direction N. $39^{\circ} \mathrm{W}$.

A well at Meux Breweryt at the junction of Tottenham Court Road and New Oxford Street is situated 64 miles from the Observatory in a direction W. 26° N. Here the top of the Chalk was reached at a depth of $157 \frac{1}{2}$ feet and the bottom at 812 feet, giving a total thickness of $654 \frac{1}{2}$ feet. Flints occurred in the upper 347 feet, and for 32 feet upwards from its base the Chalk was described as a chalk marl or a light-blue clay.

A well near Streatham Common Station \ddagger is situated $7 \frac{1}{4}$ miles from the Observatory in a direction W. 36° S. The top of the Chalk was reached at a depth of $241 \frac{1}{2}$ feet and its bottom at $864 \frac{1}{2}$ feet, indicating a thickness of 623 feet. The upper 220 feet are described as containing flints and being very hard, and the lower 20 or 30 feet as being marly and clayey.

A well at Crossness§, situated $7 \frac{3}{4}$ miles from the Observatory in a direction E. 3° N., proved the top of the Chalk at, a depth of $143 \frac{1}{2}$ feet and the bottom at 802 feet, giving a thickness of $658 \frac{1}{\frac{1}{2}}$ feet. Flints were more or less plentiful in the upper 447 feet and the lower 32 feet were grey marl.

On comparing these data we find that the thickness of the Chalk under the Observatory, as judged by the Crossness and Mile End wells, is likely to be between 654 and 658 feet, but that the Streatham Common Well indicates a southerly attenuation. As the Observatory lies south of a line drawn from Crossness to Mile End, this attenuation must be taken into account, and the thickness under the Observatory may be estimated at 640 feet. The Upper Greensand lies next below the Chalk. In one of the borings at Crossness its thickness is given as 65 feet, but there is no doubt that this includes some chalk marl, as suggested by Prestwich.\| At Mile End it was penetrated to a depth of 20 feet, and at Meux Brewery and at Streatham it was proved to be 28 and $28 \frac{1}{2}$ feet thick respectively. It may be assumed to be 28 feet thick under the Observatory.

The Gault was 175 feet thick at Crossness, 160 feet at Meux Brewery and $188 \frac{1}{2}$ feet at Streatham Common. It is likely to be 180 feet thick under the Observatory.

Below the Gault there may be some Jurassic strata. At Meux Brewery 64 feet of limestone belonging to the Great Oolite Series were penetrated, and at Streatham Common 38 $\frac{1}{\frac{1}{2}}$ feet of limestone and clay believed to belong to the Forest Marble. It has already been noted that there were $97 \frac{1}{2}$ feet of limestone below the Gault at Richmond, part of which however were thought to be of Neocomian age. On the other hand at Crossness the Gault has beeu proved to lie directly upon Palæozoic rocks\|. These facts indicate a westward thickening of the Jurassic strata. They come in agaiu eastwards of Crossness also as proved at Chatham but whether they exist under Greenwich is doubtful. On the whole it will probably be safer to assume their absence.

The depth at which the Palæozoic rocks are likely to occur beneath Greenwich Observatory remains to be considered. At Crossness rocks described as rock-shale and very hard grey quartzose sandstones were reached at 1002 feet below Ordnance Datum. They were assigned by Prestwich to the Old Red Sandstone or Devonian, but were thought by Mr. Whitaker to be more probably TriassicT. At Meux Brewery red and green shales with thin quartzites, all assigned to the Upper Devonian, were reached at 979 feet below Ordnance Datum. At Streatham Common red, grey and greenish sandstones were reached at 1010 feet below that datum. At Richmond alternations of sandstone and indurated marl were reached at 1220 feet below that datum. The red and greenish sandstones reached at Streatham were left by Mr. Whitaker as "of doubtful age", but they correspond in character to parts of the Old Red Sandstone of South Wales. This

[^5]similarity taken in connection with the fact that they dipped at about 30° and occurred at about the depth at which the Palæozoic floor might be expected, seems to justify their being assigned to the Old Red Sandstone. For the same reasons the red rocks proved at Richmond are more probably of Devonian than of Triassic age.

If the Palæozoic floor were a plane its depth under Greenwich could be calculated precisely from these data, but it is known to undulate, though it rises on the whole with a remarkably even and gentle gradient towards the north or north-east under London. Judged by the Meux and Streatham sections it would be about 990 feet below Ordnance Datum, but on adding up the thicknesses assigned above to the Tertiary and Secondary strata we get a depth of only 930 feet. The latter is probably the more reliable estimate, and the complete sequence of the strata underlying Greenwich Observatory will therefore be as follows (see also Figure 2) :-

					Thickness feet		Depth feet
Lower London	(Sand and pebbles		13	13
Tertiary Beds	$\{$ Blue and red clay			...		11	24
85 feet	(Sand, with a layer of		the bottom	\ldots	\ldots	61	85
	Chalk with flints			310	395
Chalk 640 feet	\{ Chalk without flints	\ldots	300	695
	Chalk marl		30	725
Upper Greensand	Sand	...	\cdots	28	753
Gault	Clay ...	\ldots	\ldots	180	933

Palæozoic Rocks, assumed to be red, grey and greenish sandstone as at Streatham Common.
The Observatory being 155 feet above Ordnance Datum the Palæozoic floor will be only 778 feet below that datum. The highest points in that floor yet proved in the London district are Kentish Town, Turnford and Ware, where it lay $939,870 \frac{1}{2}$ and $686 \frac{1}{2}$ feet respectively below Ordnance Datum. Its calculated height under Greenwich was therefore somewhat unexpected.

Its height is accounted for by an anticline and fault which trend in a direction E. $30^{\circ} \mathrm{N}$. on the north-west side of the Observatory. The existence of the anticline is proved by the depths at which the top of the Chalk has been reached in various borings. Near Blackheath the Chalk was touched at about Ordnance Datum, but in the Observatory well at 70 feet above that datum, the rise therefore being 70 feet in about half a mile, or about 1 in 38 , towards the north-west. Again at the Hospital the top of the Chalk lies 98 feet below Ordnance Datum and at the Atlas Works in West Ferry Road,* on the opposite side of the river, at 84 feet below the datum, proving that the rise north-westwards continues thus far, as shewn in Figure 3. But a little further north its depth increases to 100 and 200 feet below the datum.

The fault is believed to run about 300 yards north-west of the Observatory. It is referred to by Mr. Whitaker as the most important fault (or system of faulting) in the London Basin. It was seen in two railway-cuttings south of Deptfordt, and is fixed approximately in position by a well in East Street, Greenwich, where the top of the Chalk lies 134 feet below Ordnance Datum, and 204 feet below its level under the Observatory. Beyond this it is believed by Mr. Whitaker to curve southwards by Woolwich and to merge into the slight roll that affects the junction of the Tertiary Beds and the Chalk on the north side of the Thames near Purfleet and Stifford. The throw of the fault at Greenwich must be 204 feet plus an allowance for the dip, or about 230 feet in all.

There can be no doubt therefore that the Palæozoic floor has been raised locally under Greenwich by post-Tertiary earth-movements, though that there was pre-Cretaceous elevation also of part of the district is proved by the fact that the Gault rests directly upon that floor at Crossness. The following table gives the depths at which the floor has been reached in various parts of the south-east of England.

[^6]
Fig. 3

S. $32^{\circ} \mathrm{E}$.
N. $32^{\circ} \mathrm{W}$.

SCALE
6 Inches-1 Mile
For horizontal \& vertical distances
.

Depths to the Palcozoic floor in the east and south of England. (See Figwre 1.)

			Depth from surface feet			Depth below Ordnance Datum. feet		
Harwich	.	\cdots	...	1025 $\frac{1}{2}$	\cdots	1015
Stutton	994	974
Weeley	1094 $\frac{1}{2}$	1040*
Ware	$796 \frac{1}{2}$	6861
Turnford	\ldots	$980 \frac{1}{2}$		8701
Loughton	\cdots	...	(not reached at 1096)			\ldots
Kentish Town	\cdots	1115	939
Meux Brewery	1064	9781
Streatham	1120	\ldots	1010
Richmond	\cdots	1237	1220
Crossness	\cdots	1008	10012
Brabourne	1905
Ropersole	1581	1181
Ellinge			...	1686		1280 (about)
Dover No. 2 S				1157				1103

To the west of London a boring at Winkfield near Windsor failed to reach Palæozoic rocks at 1243 feet (1025 feet below Ordnance Datum).

To the south-west a boring at Brookwood ended in Chalk at 884 feet; others at Southampton, Portsmouth and Goodwood left off in Chalk at 1313, 1037 and 1012 feet respectively.

To the south and south-east a boring at Penshurst was in Kimeridge Clay at 1864 feet and one at Warren Farm, the Industriai School east of Brighton, was in Lower Greensand at 1285 feet. The Sub-Wealden boring at Battle left off in Oxford Clay at 1905 feet.

To the east-south-east the Pluckley boring was abandoned in Kimeridge Clay at 1698 feet, but the Brabourne boring reached Palæozoic rocks at 1905 feet. Further east the Ropersole and Ellinge borings have reached Coal Measures at depths of 1581 and 1686 feet (1181 and 1280 feet below Ordnance Datum) respectively, while the Dover Shaft, No. 2, has entered them at a depth of 1157 feet or 1103 below Ordnance Datum.

At Calais the Palæozoic floor was reached at 1102 feet.
To the east of London a boring at Chatham ended in Oxford Clay at 965 feet and another at Sheerness ended in Chalk at 805 feet.

From these data it is possible to contour parts of the Palæozoic floor. For example a con-tour-line drawn at 1000 feet below Ordnance Datum runs between Ware and Winkfield, and must trend generally north-westwards between Northampton and Rugby. In the opposite direction it passes between Kentish Town and Richmond, runs close to Streatham and through Crossness, but keeps clear of Chatham where one boring ended in Lower Greensand at 1035 feet, while another ended in Oxford Clay at 947 feet below Ordnance Datum, probably not far above the Palæozoic rocks. The Daver Shaft, No. 2, entered the Coal Measures at 1103 feet below Ordnance Datum, nor have the older rocks been found to the south-east of Crossness within 1000 feet of Ordnance Datum. The contour-line must therefore double back to the north-west passing between Loughton and the other neighbouring borings. Thence its position is hypothetical as far as Harwich, where it is determined by the Harwich, Weeley and Statton borings. Further north it probably passes near Coombs, where a boring ended in Gault at 895 feet, and certainly keeps to the east of Culford where a boring reached Palæozoic rocks at 637 feet (527 feet below Ordnance Datum).

Nothing is known of the Palæozoic rocks of the broad tract between Culford, Harwich Crossness and Ware. The Loughton boring, which failed to reach them at 1096 feet, shews that it would not be safe to assume that they lie within 1000 feet of Ordnance Datum over the whole of the tract, but for the purposes of the present enquiry this is immaterial.

[^7]As regards the structure of the Palæozoic floor it is known only that Silurian rocks were reached at Ware and Devoniarfat Meux Brewery, in Tottenham Court Road. Old Red Sandstone was recognised at Crossness, and occurred probably at Kentish Town, Richmond and Streatham also. The relative positions of these rocks suggest a southerly dip, and some experiments at Turnford and Ware indicated a dip of 25° in a direction $\mathrm{S} .25^{\circ} \mathrm{W}$. and a dip of 41° in a direction $\mathbf{S} .1^{\circ} \mathrm{W}$., at the two places respectively*. At Richmond and elsewhere the dip was about 30°; but at Bra bourne much higher, a fact which suggests that the nearly horizontal Coal Measures proved at Dover and Ropersole are terminated westwards by a fault, not improbably the continuation of one of the great lines of disturbance proved in the Pas de Calais Coal Field.

It will be seen therefore that there is a gentle eminence in the Palæozoic floor, running in a north-west, or west-north-west direction under London, and extending, but with diminished height, towards Dover in the opposite direction. Towards the south-west the slope as reckoned between Ware and Richmond falls at the rate of about 1 in 257, but the floor undulates and between Kentish Town and Richmond the gradient amounts to about 1 in 141. Kew Observatory stands over this steeper part of the slope. Under Greenwich the floor appears to be gently arched up and faulted as described, the Observatory being situated on the southern side of the crest of the arch.

The principal differences therefore between the stratigraphical columns beneath the two Observatories may be summed up as follows:-

Under Kew Observatory there are 150 feet of London Clay near the surface and $97 \frac{1}{2}$ feet of Limestone at a depth, both of which are absent at Greenwich.

Under Kew the Palæozoic floor lies at a depth of 1237 feet below the surface as compared with 933 feet at Greenwich.

Lastly Greenwich Observatory stands on the southern limb of a gentle post-Tertiary anticline.

Specific Gravities.
The following specimens were collected for the purpose of ascertaining the specific gravities of the various rocks underlying Kew and Greenwich :-

1. London Clay from a depth of 60 to 70 feet under St. George's Circus, Blackfriars Road2. Do. do. 60 feet under Hyde Park Corner. 3. Do. do. 36 feet under Jermyn Street.
2. Woolwich and Reading Beds (Clay); Crondall Pottery, Surrey.
3. Thanet Sand; Charlton.
4. Upper Chalk; Charlton.
5. Flint ; Charlton.
6. Chalk Marl from a depth of 450 feet; Chatham Waterworks.
7. Upper Greensand from a depth of 823 feet; Richmond Boring.
8. Upper Greensand; Merstham.
9. Gault from a depth of 990 feet; Meux Brewery, Tottenham Court Road.
10. Great Oolite (limestone) from a depth of 1001 to 1065 feet; Richmond Boring.
11. Old Red Sandstone from a depth of 1411 feet; Richmond Boring.
12. Do. (marl) 1180 feet; Streatham Boring.
13. Do. do. $120 \pm$ feet; do

The determinations were made in the laboratory at Jermyn Street by Dr. W. Pollard, from
whose report I have drawn up the following account:-
The specimens were roughly crushed so as to pass through 2 sieve of 8 holes to the inch. Moisture given off at $105^{\circ} \mathrm{C}$. was determined. The specific gravity of the samples before drying was determined in pyknometers, and that of the dried rock calculated.

To ascertain the amount of water the dried specimens were capable of absorbing, glase tubes open at one end, and with a piece of linen tied over the other, were used. The weight of the tubes after moistening the linen and allowing to drain thoroughly was determined. The tubes

[^8]were then filled with the respective specimens, weighed, and placed in distilled water for 24 hours, 80 as to allow the water to soak upwards into them. When they were thoroughly soaked any excess of water was allowed to drain off in an atmosphere saturated with moisture. They were then weighed at weekly intervals. After seven weeks some had become constant, but others continued to lose moisture after 10 weeks, when the experiment was discontinued. The results obtained are shewn in the following table:-

Dr. Pollard further notes, as sources of error, that the tubes were not packed under the conditions of pressure \&c., which obtain at a depth, and that changes of temperature in the laboratory probably account for some irregularities observed in the draining off of the water.

No. 7 (Flint) was considered to be non-absorbent. The specific gravities of Nos. 13, 14 and 15 (Old Red Sandstone and Marl) were determined by suspending them in water allowing them to drain for a few hours in a moist atmosphere, then weighing, drying at $105^{\circ} \mathrm{C}$. and weighing again.

It being evident that no confidence could be placed in the determination of the watercapacity of some of the specimens, it was decided to make further experiments on specimens in as nearly as possible the condition as to moisture in which they occurred in nature. For this purpose the following rocks were freshly dug, enclosed at once in tin boxes and brought to the laboratory:-

1. London Clay from a depth of 60 feet ; Dover Street, Piccadilly.
2. Upper Chalk ; Strood, Kent.
3. Middle Chalk ; Blue Bell Hill Upper Pit, Burham, Kent.
4. Lower Chalk ; Merstham, Surrey.
5. Chalk Marl; Blue Bell Hill Lower Pit, Burham, Kent.
6. Gault ; Burham Brick Pit, Kent.

The specific gravity of each specimen in the condition in which it reached the laboratory was determined in various oils. The result was satisfactory for the Clays, but not for the Chalks from which the air could not be removed. In every case a determination was made also by pyknometer.
*This weighing varied by 0.1 gram or lese from the previous weighing and in regardod as practically constant.

No. of specimen		Sp. Gr. in oil		in water		Percentage of water by weight		p. Gr. of d specimen pyknometer		r. calculatod that of the t specimen
1	...	2-054*		$2 \cdot 050$		$19 \cdot 66$		2-746		2-760
2		$2 \cdot 026$		$2 \cdot 072$		$18 \cdot 33$		$2 \cdot 673$		2-729
3	\ldots	2-395 \dagger 。		$2 \cdot 405$	\ldots	$7 \cdot 29$		2-694	...	2-701
4		$2 \cdot 048$		$2 \cdot 062$		$18 \cdot 27$		2.702		2.703
5		2-096 \ddagger		2.108		16.54		2-700	...	2.701
6	...	1.995	...	$1 \cdot 995$...	$21 \cdot 12$		2-718	...	2.719

It will be seen that the specific gravities of all the specimens except the Clays are lower as determined in oil than in water, which points to the air not having been entirely eliminated.

The calculated specific gravity is also in every case slightly higher than that directly determined on the dried sample in the pyknometer. This is probably due to the dried powder having absorbed moisture on the balance.

With respect to specimen 3 the moisture percentage is probably much too low and the other results unreliable. This may be due to the specimen having lost water in the quarry, though it was got in as nearly a natural condition as possible. Two lumps were therefore suspended and boiled in water for two or three hours, and when cold weighed in water. They were then allowed to drain for 15 minutes, weighed, drained for another 15 minutes, reweighed and finally dried at $105^{\circ} \mathrm{C}$. From these data the specific gravity was found to be

$$
\begin{array}{ll}
\text { Wet Samples } & 2.016 \text { and } 2.072 \\
\text { Dry Samples } & 2.511 \text { and } 2.558
\end{array}
$$

Water percentage (by weight) in wet sample 16.14 and 15.04 .
The specific gravities thus determined are $0 \cdot 190$ and 0.143 respectively lower than the calculated specific gravity. The difference is probably due to incomplete drying and to some air being still contained. The percentage of water, however, is probably nearer that which exists in the Chalk under the Observatories than the percentage given in the table.

In summing up these results, we must bear in mind that there are several discrepancies which point to the advisability of further experiments, and that an absolutely true result could be obtained only by experimenting on the rocks in the conditions of moisture and pressure in which they occur in nature. The results, so far as the experiments have gone, are embodied in the following table:-

			Specific gravity in natural condition		Pereentage of water by weight
London Clay	\ldots	\ldots	$2 \cdot 050$	\ldots	$19 \cdot 66$
Upper Chalk	\ldots	\ldots	$2 \cdot 072$	\ldots	$18 \cdot 33$
§Chalk-flint	\ldots	\ldots	$2 \cdot 600$	\ldots	
Lower Chalk	\ldots	\ldots	$2 \cdot 062$	\ldots	$18 \cdot 27$
Chalk Marl	\ldots	\ldots	$2 \cdot 108$	\ldots	$16 \cdot 54$
Gault	\ldots	\ldots	$1 \cdot 995$	\ldots	$21 \cdot 12$
\#Great Oolite limestone	\ldots	\ldots	$2 \cdot 383$	\ldots	$8 \cdot \mathbf{4 2}$
\#Old Red Sandstone	\ldots	\ldots	$2 \cdot 622$	\ldots	$0 \cdot 65$
Do. (marl)	\ldots	\ldots	$2 \cdot 567$	\ldots	$3 \cdot 88$
Do.	\ldots	\ldots	$2 \cdot 723$	\ldots	$0 \cdot 77$

[^9]
CHAPTER II.

The Observations in 1904.

[January to June].

On the arrival of the pendulum apparatus in India in January 1904 a set of observations was made in Dehra Dún in the same room as had been used by Captain Basevi in 1870 and 1871. The primary object of these observations was to determine the difference between the value of g at Dehra Dún and its value at Kew. A secondary object was to establish a connection between the new series of observations and those made between 1865 and 1870 by Captains Basevi and Heaviside. In order to strengthen this connection it was decided that during the first tour four more of Basevi's stations should be visited, namely Calcutta, Madras, Bombay and Mussooree, and that the circuit should be completed by a second visit to Dehra Dún.

The building in which Basevi observed in Mussooree has changed hands, and though permission to observe there on this occasion was obtained, it seemed unlikely that it would be again available, and a second station in Mussooree was therefore selected in case of its proving desirable at any future time to make another set of observations which should be comparable with those of the present series.

Dehra Dun.

Latitude					
Longitude	\ldots	\ldots	30°	19^{\prime}	$29^{\prime \prime}$
Height above mean sea level	\ldots	78	3	15	
	\ldots		2239	feet	

The apparatus was set up in the room known as the Transit room. It was in this room that Basevi observed and the new pendulum station is almost identical with the old one.

A small pedestal of brick in cement was built to receive the pendulum stand. Its dimensions were 2 feet 3 inches square at bottom, 1 foot 6 inches square at top, and 1 foot 8 inches high.

Similar pedestals were built at all the stations visited during this season. The granite slab was cemented to this pedestal, and the pendulum stand was screwed tightly to the slab.

The clock S.R. 238, was set up on an iron tripod stand which had been made in Dehra Dún. The tripod has three levelling screws which can be firmly clamped.

The time observations were made with Transit Instrument No. 2. by Messrs. Troughton and Simms, which belongs to the Longitude equipment purchased in 1894. The transits were recorded on one of the chronographs of the same equipment. In January and February 1904, breakcircuit chronometer Bond No. 480 was used for the star transits and the rate of S. R. 238 was deduced by means of comparisons made on the chronograph.

All the star observations in January and February were made by Lieut. H. M. Cowie, R. E. The programme contained from 8 to 12 zenithal stars, and 2 or 3 polar stars for the determination of the deviation in azimuth. The same stars were observed each night.

The thermometers were the same as those used at Kew and Greenwich.
The temperature conditions were not very good. The room is large and lofty but the roof is of iron and in the day time there was an appreciable rise of temperature. A lag correction has consequently been applied both here and at all the stations of this season, employing the same formula as had been used at Kew and Greenwich.

The flexure correction was determined seven times. On the first three occasions I forgot to place the screen between the driving and the driven pendulums; when I discovered its omission I made further observations with and without the screen so as to ascertain what difference the absence of the screen would make in the correction. It was found that with the screen in position the correction was greater by 4.3×10^{-7} than when the driven pendulum was unprotected from the air set in motion by the driving pendulum. This result was to be expected, for the driven pendulum follows a quarter of an oscillation behind the other, so that the air set in motion has a retarding effect on its movement.

The results of the flexure observations are shewn in the following table:-

Date 1904		Flexure Correction	
		Without Screen	With Screen
$\begin{gathered} \text { January } \\ \text { ", } \\ \text { February } \\ " \\ " \\ " \end{gathered}$		$\begin{aligned} & 28 \cdot 3 \times 10-7 \\ & 29 \cdot 7 \\ & 30 \cdot 4 \\ & \cdots \\ & \cdots \\ & \cdots \\ & \cdots \end{aligned}$	$\begin{aligned} & 32 \cdot 6 \times 10^{-7} \\ & 34 \cdot 0 \\ & 34 \cdot 7 \\ & 35 \cdot 3 \\ & 34 \cdot 4 \\ & 35 \cdot 2 \\ & 35 \cdot 8 \end{aligned}$
Mean		-••	$34^{\circ} 5 t \times 10^{-7}$
Adopted Correction		,	$-35^{8} \times 10^{-7}$

Calcutta.

The room in which Captain Basevi observed was no longer available, but the Rector of St. Xavier's College kindly placed the lower storey of the observatory in the college grounds at my disposal. The observatory is less than 100 yards from Basevi's station.

The observations began at night and passed without incident, but next day when I began to observe I found that the arc of vibration kept changing and that the time of oscillation was quite irregular.

The cause of the irregularity was unquestionably earth-tremors set up by the traffic. The whole city of Calcutta may almost be said to be floating and the movement of vehicles sets up waves in the flexible crust.

The following is the record of one of several series of observations of the amplitude of the vibration of a pendulum, caused by these waves, the pendulum having been completely brought to rest at the beginning of the observation.

Time		Arc of vibration	mo		Are of vibration	
	20	...				
	${ }^{40}$			15		5
						${ }_{12}^{9}$
	$\stackrel{\circ}{\circ}$				…	14
						11
		

The irregularity in the time of vibration was well shewn by the fact that the estimated time of the 61st coincidence, which in general is not in error by more than 1^{s} or $1^{s} \cdot 5$, was here apt to be wrong by fully 10 seconds.

Different times of the day, and planes of oscillation in different azimuths were tried, but without producing any improvement. It was clear that it was impossible to obtain a trustworthy result in this part of Calcutta, and the observations were abandoned.

When Basevi observed here 24 years ago it is probable that the vibrations of the ground were much less marked than they are now, for there has been a great increase in the volume of the traffic in the interval; furthermore it is very likely that the long pendulums used by him were less sensitive to these tremors on account of their greater period.

I am surprised however that I have come across no mention of this difficulty in connection with the Austrian pendulum observations. It appears* that two separate sets of observations were made, the one in 1893 and the other in 1897, and both in the very same place as that which I occupied, and with precisely similar pendulums. Yet though allusion is made to ground vibrations in other places (e.g. Port Said \& Yokohama) nothing is said of any trouble in Calcutta.

Madras.

Latitude	\ldots	\ldots	13°	4^{\prime}	$8^{\prime \prime}$
Longitude	\ldots	\ldots	80	14	54
Height above mean sea level	\cdots	\ldots	20	feet	

The room in the observatory which had been occupied by Basevi was available, and was kindly placed at my disposal by Professor R. Ll. Jones, the Director. The arrangements were the same as in Dehra Dún, except that the time determinations were undertaken by Mr. Solomon, the First Assistant in the observatory, with the large transit instrument. The sidereal clock belonging to the observatory is not provided with electrical contacts and I therefore made the comparison between it and S. R. 238 by means of a mean time chronometer which was lent me for the purpose.

The temperature conditions were satisfactory. The flexure was determined six times with the following results:-

Colaba.

Latitude	\ldots	\ldots	18°	53^{\prime}	$45^{\prime \prime}$
Longitude	\ldots	\ldots	72	48	47^{\prime}
Height above mean sea level	\ldots	\ldots	34	feet	

The out-building of the observatory which was lent to Captain Heaviside in 1873 was kindly placed at my disposal by Mr. Moos, the Superintendent. The position of this building is not very well suited to pendulum observations as it lies very near the public road and the floor is consequently somewhat liable to surface vibrations.

[^10]The rate of the clock was determined by transits which I observed myself with Transit Instrument No. 2. by Troughton and Simms. The programme included 12 zenithal and 4 polar stars. The clock's rate was rather unsteady, this may have been due to vibrations of the floor. The temperature conditions were fairly satisfactory.
The flexure correction was determined six times with the following results:-

Date		Flexure Correction
March 16	\cdots	$39^{8} 5 \times 10^{-7}$
	\ldots	39.4 36.1
	\ldots	38.9
" 23	...	38.2
" "	...	$38 \cdot 5$
Mean	...	38.4×10^{87}
Adopted Correction	...	-38×10^{-7}

Mussooree (Dunseverick).

Latitude	\ldots	\ldots	30°	27^{\prime}	$28^{\prime \prime}$
Longitude	\ldots	\ldots	78	3	33
Height above mean sea level	\ldots	\ldots	7129	feet	

The apparatus was erected in a room in the lower storey of the house called Dunseverick. This house is situated on the eastern end of a ridge which runs nearly due east and west ; the ground falls very steeply on three sides, but on the fourth it continues at about the same level, though with irregular ups and downs, for about 7 miles and then descends gradually to the Jumna.

There is a bench-mark of the G. T. Survey in the verandah just outside the pendulum room, so that the height above sea level is known with an unusual degree of accuracy for a station in the hills. The temperature conditions were good.

I made the time determinations myself, using Transit Instrument No. 2 by T. \& S.
The flexure correction was determined six times with the following results:-

Mussooree (Camel's Back).

Latitude			30°	27^{\prime}	$35^{\prime \prime}$
Longitude	\ldots	\ldots	78	4	32
Height above mean sea level	\ldots	\ldots	6924 feet		

This was Basevi's station. The house which he built expressly for the pendulums, and which was close to the house formerly used as the G. T. Office, had when I reached Mussooree been almost entirely pulled down, with a view to the erection of a larger one. The owner however gave me permission to use a part of the new house as soon as the roof was on, and before the inside fittings were commenced. The roof was of iron, so to improve the temperature conditions I had a temporary thatch laid on the top of it.

The exact site of Basevi's pillar was not discoverable, but the new station is certainly not as much as 10 feet from the old one.

The height above M. S. L. was obtained by levelling from a bench-mark of the G. T. Survey which was only a few yards away.

I made the time determinations myself.
The flexure correction was determined four times with the following results :-

Dehra Dun.

Latitude	\ldots	\ldots	30°	19^{\prime}	$29^{\prime \prime}$
Longitude	\ldots	\ldots	78	3	15
Height above mean sea level	\ldots	\ldots	2239	feet	

The closing observations in Dehra Dún were made in the same room as were those at the beginning of the tour. Two series of observations were made; during the first the break-circuit chronometer Bond 480 was used both for stars and pendulums, and the transits were observed partly by me and partly by Sub-assistant Superintendent Hanuman Prasad.

During the second series the clock S. R. 238 was used and all the star observatione were made by Babu Hanuman Prasad.

The temperature couditions were not very satisfactory.
The flexure correction was determined five times as follows :-

Table I．Details of the Observations．

$\begin{aligned} & \text { 喿 } \\ & \text { 总 } \\ & \text { مٌ } \\ & \text { م } \end{aligned}$				Mean Semi-Arc	Tempera－ ture			Observed Time of Vibration	Correction on account of						Reduced Time of Vibration
										$\frac{\mathrm{L}}{4}$		80	茄	$\begin{aligned} & \text { D } \\ & \text { A } \\ & \text { A } \\ & \text { 甶 } \end{aligned}$	
Dehra Dun－（Basevi＇s Station）．															
25－26 January， 1904.															
137	$\begin{array}{cc}h & m \\ 5 & 21\end{array}$	34＊413	1．88		$13^{\circ} 31$	－0．01	$0 \cdot 881$	$0 \cdot 5073717$	＋110		652		-523	－35	0.5072610
139	614	$34 \cdot 863$	1.88	14	$13 \cdot 34$	0.01	0.881	$0 \cdot 5072753$	110		654	0	534		$0 \cdot 5071635$
138	78	33.347	1.88	15	$13 \cdot 32$	0.01	$0 \cdot 881$	$0 \cdot 5076111$	110	6	653		504		0.5075023
140	759	35．224	1.88		13.29	0.01	$0 \cdot 88 \mathrm{I}$	$0 \cdot 5071997$			651		534		0.5070882
													Mean	．．	$0 \cdot 5072538$
137	1724	34．463	－1．88	15	11－82	＋0． 57	0.883	0． 5073610	＋110		579	14	－ 525	－35	0.5072589
139	1815	34．900	1.88	15	12.25	0.57	0.882	$0 \cdot 5072675$			600	14	534		0.5071624
138	199	3.3 .374	$1 \cdot 88$	14	12.82	0.57	$0 \cdot 878$	$0 \cdot 5076048$			628	14	502		0.5075002
140	1203	35＇243	1－88	16	13.30	$0 \cdot 57$	$0 \cdot 875$	$0 \cdot 5071958$	110		652	14	530	35	$0 \cdot 5070858$
													Mean		0.5072518
$\begin{array}{ll}\text { Time of Vibration of Mean Pendulum ．．．} & 0.5072528\end{array}$															
26－27 January，1904．															
		｜35．215	－1．73｜		13＇55	－0．01｜	0．877	$0 \cdot 5072016$				\bigcirc	－ 531		0.5070881
138	629	33．33．3	1•73	15	13.68	0.01	$0 \cdot 876$	$0 \cdot 5076143$	102		670	0	501		$0 \cdot 5075033$
139	723	34－847	1.73	14	13.61	0.01	$0 \cdot 876$	$0 \cdot 5072788$	102		667		531	35	$0 \cdot 5071652$
137	817	$34 \cdot 401$	1＇73		13.61	0.01	0.876	$0 \cdot 5073743$	102		667	0	520	35	0.5072618
													Mean	．．．	$0 \cdot 5072546$
140	1735	35．270	－1．73	16	12.05	＋0．49	$0 \cdot 878$	$0 \cdot 5071902$	$+102$		590	＋ 12	－ 532	－35	$0 \cdot 5070852$
138	$18 \quad 33$	33．379	1．73	15	12.50	$0 \cdot 49$	$0 \cdot 876$	$0 \cdot 5076036$	102		613	12	501	35	$0 \cdot 5074995$
139	1926	34－885	$1 \cdot 73$	14	12.93	0.49	0.873	－50；2；06	102		634	12	529	35	0.5071617
137	2022	34．425	$1 \cdot 73$	14	13.38	0.49	0．869	0.5073692	102	5	656	12	516	35	$0 \cdot 5072594$
													Mean		0.5072515
Time of Vibration of Mean Pendulum ．．． 0.5072530															
29．30 January， 1904.															
139		34．850	－1－66	15	13.64	－0．06	0.879	0.5072780			668				0.5071633
137	651	34．399	1.66	15	13.66	0.06	0.877	$0 \cdot 5073748$	97		669		521		0.5072612
140	748	35－217	1．66	15	13.56	0.06	0.880	$0 \cdot 5072011$	97		664		533	35	$0 \cdot 5070868$
138	845	$33^{\circ} 338$	1.66		13.50	0.06	0.878	0.5076131	97	6	662	2	502	35	$0 \cdot 5075021$
													Mean		$0 \cdot 5072534$
139	1747	34－899	－1．66	12	12．39	＋0． 52	0.880	$0 \cdot 5072678$	＋ 97		－ 607	$+13$	－ 533	－35	0.5071609
137	1848	35•586	$1 \cdot 66$		$12 \cdot 84$	0.52	0.878	$0 \cdot 5073663$	97		629	13	522	35	$0 \cdot 5072582$
140	1948	35－235	I．66	15	$13 \cdot 38$	0.52	0.874	0.5071972	97		656	13	5.30	35	$0 \cdot 5070855$
138	12047	［33．340	1．66	15	13.94	$0 \cdot 52$	0.871	$0 \cdot 5076126$	97	6	683	13	498	35	$0 \cdot 5075014$
													Mean	．．．	0.5072515
Time of Vibration of Mean Pendulum ．．． 0.5072525															
3－4 February， 1904.															
138	610	$\|33 \cdot 367\|$	－2．50｜	15	13.37	＋0．06	0．879	$0 \cdot 5076065$	$1+147$		－655		-503	－35	$0 \cdot 5075014$
140		$35 \cdot 249$	2.50	14	13.44	0.06	$0 \cdot 878$	$0.50719+6$	147		659		532	35	$0 \cdot 5070863$
137 1	8 8 0	34．4．39	2.50	15	13.51	0.06	0．878	$0 \cdot 5073661$	147		662		522	35	$0 \cdot 5072584$
139	855	$34 \cdot 883$	$2 \cdot 50$	16	13.5 .3	0.06	0．878	$0 \cdot 5072710$	147	7	663	1	532	35	0.5071621
													Mean		0.5072521
137	1820	34．450	$-2 \cdot 50$	14	13.01		0.879				-637	$+12$	－ 522		$0 \cdot 5072598$
139	1913	34．893	2.50	16	13.44	$0 \cdot 49$	$0 \cdot 876$	$0.50,2691$	$1+7$	7	659	12	531	35	0.5071618
138	209	3．3．361	2.50	16	13.95	0.49 0.49	0.872	$0 \cdot 5076079$	147	7	684	12	499	35	0.5075013
140	214	35．231	$2 \cdot 50$	15	$14 \cdot 36$	0.49	0.871	0．5071983	147		704	12	528	35	0.5070869
													Mean		0.5072525
Time of Vibration of Mean Pendulum ．．． 0.5072523															

Table I. Details of the Observations-(Continued).

Table I. Details of the Observations-(Continued).

Table I．Details of the observations－（Continued）．

$\begin{aligned} & \text { 豆 } \\ & \text { 豆 } \\ & \text { 邑 } \\ & \text { مin } \end{aligned}$			$\begin{aligned} & \text { \& } \\ & \text { Ha } \\ & \text { H } \\ & \text { d } \\ & 0 \end{aligned}$		Tempera－ ture			Observed Time of Vibration	Correction on account of						Reduced Time of Vibration							
									$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { H } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$			邑		家								
137		33．571	$0 \cdot 56$		25.75	$0 \cdot 11$	0.903	－ 5075596			1262		536		$0 \cdot 5073718$							
140	12	34－344	0.56		25.62	$0 \cdot 11$	$0 \cdot 903$	－$\cdot 5073870$	33	6	1255		547		$0 \cdot 5071988$							
138	13	32－556	$\bigcirc{ }^{\circ} 56$		$25 \cdot 56$	$0 \cdot 11$	0.902	－ $5 \cdot 577988$	33	7	1252	3		38	0.5076139							
													Mean		$0 \cdot 5073648$							
139	2221	$34 \cdot 025$	＋0．56	16	25.35	＋0． 51	$0 \cdot 902$	－ 5074571	33		－1242	＋ 13	547		$0 \cdot 5072717$							
137	2329	33．595	$0 \cdot 56$	14	25.67	0.51	$0 \cdot 901$	－ 5075542	3.3			13	535		0.5073686							
140	－ 26	34－352	$\bigcirc \cdot 56$	17	26.20 26.6	0.51	－ 0.895	$\bigcirc \cdot 5073852$	33		1284			38	0.5071960							
13		$32 \cdot 541$		${ }^{5}$			0.895	$0 \cdot 5078026$							0.5076146							
mime ofMibration of Mean Pendulum																						
21．22 March， 1904.																						
138 140	10 10	62 3444 $34 \cdot 334$					$\left\lvert\, \begin{aligned} & 0.902 \\ & 0.900 \\ & 0\end{aligned}\right.$	0.5078018 0.5073891 0.5781							0.5076138 0.5071983							
138 137	11 57		0．80	： 5	25.91 25.83	0.08 0.08	0.900 0.900	－ $0 \cdot 5073891$	47		1278 1266				0.5071983 0.5073717							
139	1252	23＇996	0.80	17	$25 \cdot 73$	$0 \cdot 08$	$0 \cdot 902$	0.5074637	47	8	1261	2		38	$0 \cdot 5072734$							
													Mean	．．．	0.5073643							
138	228	$932 \cdot 561$	＋0．80	15		＋0．3i	0＇904	－． 5077977			－1236	＋ 9	－ 517	－38	0.5076142							
140	2313	334.348	$0 \cdot 80$	14	25.58	$0 \cdot 37$	0.903	0.5073860						38	0.5071978							
137	－ 10	－33．578		16		－ 37	－ 0.900	－ 5075596	47					38	0.5073707							
${ }_{13}$		${ }_{33} \cdot 995$	$0 \cdot 80$	16	26．27		$0 \cdot 897$	－－5074637	47	7	1287	9		38	0.5072723							
													Mean	．．．	0.5073638							
	Time of Vibration of Mean Pendulum ．．． 0.5073641																					
Mussooree（Dunseverick）．																						
137 8	125				16.9 16.41	+0.13 0.13	$0 \cdot 722$ $0 \cdot 721$	0.5075100 0.5074146	－499		793 804 804	3 3	$\begin{array}{r}429 \\ 437 \\ \hline\end{array}$		0.5073334 0.5072360							
138	135	$5{ }^{32}$［743	8.50	16	16.52	0.13	c． 721	－ 0.5077537	499		809				0.5075772							
140	145	3 3 － 553	$8 \cdot 50$		16.56	0.13	$0 \cdot 723$	0.5073413	499	7	811	3	437		0.5071621							
													Mean	\cdots	0.5073272							
137	\bigcirc	1 $33 \cdot 798$	＋8．50	18				－ 5075079			－ 790				$0 \cdot 5073314$							
139 138 188	－ 5	退32．228	8.50		$16 \cdot 33$	0．11	0.721 0 0	－ 0.5074122	499		800		437		0.5072341							
138	15	$1{ }^{32}$＇754		17	16.40	$\bigcirc 11$	$0 \cdot 721$	－ 5077510	499		804		412		． 0.5075749							
		$734 \cdot 569$	$8 \cdot 50$	17	$16 \cdot 47$	0．11	0.720	－． 5073380	499						－0．5071592							
													Mea		0.5073249							
	Time of Vibration of Mean Pendulum ．．． 0.5073261																					
23.24 April， 1904.																						
140	12	$1\|34 \cdot 562\|$	＋ $8 \cdot 17$	17	16．61	＋0．14	0．719	－ 5073397	－480		－814	＋	－436		0.5071621							
138	125	8 32．740		17	$16 \cdot 87$	$0 \cdot 14$	$0 \cdot 719$	－ 50.78542						41	0.5075778							
139	135	5 34－204					$0 \cdot 718$	－． 5074176				3		41	0.5072386							
137	145	5233．769		17		0.14	$0 \cdot 718$	$0 \cdot 5075146$	480			3		41	$0 \cdot 5073357$							
													Moan		0.5073286							
140	\bigcirc	20 34×570	＋8．17	18	16.64	＋0．08	0.723	－ 0.5073378	－480		－815	＋ 8	－ 437	41	$0 \cdot 5071598$							
${ }^{138}$		$3{ }^{32 \cdot 751}$	$\bigcirc{ }^{8 \cdot 17}$	17	16.77	$0 \cdot 8$	0.720	－ 0.5077517	480		82			41	$0 \cdot 5075756$							
139	2	$34 \cdot 23$	$8 \cdot 17$	18	16.82	$0 \cdot 08$	0．720	－ 5074133	480					41	－ 5072345							
	3	$2 \mid 33 \cdot 786$	8．17	17	16.90	－ $0 \cdot 08$	0．720	0．5075106	480		828			41	$0 \cdot 5073323$							
													Mean		$0 \cdot 507325$							

Table I. Details of the Observations-(Continued).

Table I. Details of the Observations-(Continued).

Table I．Details of the Observations－（Continued）．

$\begin{aligned} & \text { 鲟 } \\ & \text { 吕 } \\ & \text { م } \end{aligned}$					Tempera－ ture		Density of Air	Observed Time of Vibration	Correction on account of						Reduced Time of Vibration							
										－		－		发								
3.4 June， 1904.																						
140	$\left\lvert\, \begin{array}{cc}h & m \\ 15 & 0 \\ 15\end{array}\right.$	$\left\lvert\, \begin{gathered}34 \cdot 788 \\ 32 \cdot 948\end{gathered}\right.$	+2 +2.99 2.99		$27^{\circ} 74$			$0 \cdot 5072932$			－1359	6	－ 501		0.5070856							
138 138 139	15 $\begin{aligned} & 15 \\ & 16 \\ & 16 \\ & 5\end{aligned}$	$\left\lvert\, \begin{aligned} & 32 \cdot 948 \\ & 34 \cdot 436\end{aligned}\right.$	2.99 2.99	15	$27 \cdot 29$ 27 27	0.26 0.26	0.827 0.827	－ 507077047 0.5073667	176 176		1347 1335 1.354	6 6	473 501		0.5075010 0.5071613							
137	1747	$34 \cdot 011$	$2 \cdot 99$	15	$27 \cdot 02$	0.26	0.828	$0 \cdot 5074601$	176		1324		492		0.5072568							
													Mean		$0 \cdot 5072512$							
140		34．776	＋2．99	15		＋0．52	0.818 0.818	－ 5072937						－29	$0 \cdot 5070852$							
138		$32 \cdot 93{ }^{\circ}$	2.99	16	28.95	$0 \cdot 52$	0.814 0.814	O． 5077390	176 176		1419		466	29	$0 \cdot 5075006$							
139 139		34－399	2.99	16	29.47 29.94	0.52 0.52	－ 0.813	－ 0.5073750	176 176		1444			29	$0 \cdot 5071614$							
${ }^{137}$		33．947	$2 \cdot 99$	16	29.94			$0 \cdot 5074745$							$0 \cdot 5072597$							
Mean ... 0.5072517 Time of Vibration of Mean Pendulum ．．． 0.5072514																						
4－5 June， 1904.																						
	151	｜34－390｜	＋3．43	15	｜ 28.80	｜－0．14｜0	0．823	－ 0.5073768	－201	－6	－1411	－ 4	－ 499		0.5071618							
137	155^{8}	33.956	3．43	14	28．48	0.14	0．823	$0 \cdot 5074726$	201		1396		489	29	0.5072603							
140	1657	$34 \cdot 750$.	． 3.43	15	28.45	0.14	0.822	－ 0.5072993			${ }^{1} 394$		498	29	$0 \cdot 5070861$							
${ }^{38}$	1754	32－923	3.43	16	$28 \cdot 28$	0.14	0.823	－ $507{ }^{108}$	201	7	1386	4	471	29	0.5075010							
													Meun		$0 \cdot 5072523$							
139	313	$34 \cdot 403$	＋ 3.43	15	$29 \cdot 16$	＋0．43	0.814	－ 0.5073740	－201		－1429	＋ 11	－ 493	－29	$0 \cdot 5071593$							
137	47	33.953	3.43	15	29.62	0.43	$0 \cdot 813$	－ 0.5074731	201		1451	11	483	29	$0 \cdot 5072572$							
140	53	34．729	3．4．3	15	30．07	0.43	0.811	－． 5073036			1473			29	$0 \cdot 5070847$							
138	64	32－888	$3 \cdot 43$	14	$30 \cdot 43$		$0 \cdot 810$	－ 5077190			1491			29	0.5075012							
Time of Vibration of Mean Pendulum																						

The value of g at Dehra Dun.
As Dehra Dún is to be the Base station for all the Indian Pendulum work, a value of g must be adopted for it in terms of which g at all other stations shall be expressed.

At Kew, where the value $981 \cdot 200$ has been accepted, we have (Vide Chap. I) the follow. ing times of vibration of the pendulums:-

Pendulum	137	138	139	140	Mean
Time of vibration	0.5067070	0.5069490	0.5066104	0.5065339	0.5067001

At Dehra Dún in January and February 1904, we have the following values:-
Table II. Time of Vibration at Dehra Dún.

Date	137	138	139	140	Mean
1904	s	8	8	8	8
January ... 25.26	- 5072600	0.5075013	0.5071630	$0 \cdot 5070870$	- 0.5072528
".. .26 .27	0. 5072606	0.5075014	0.5071635	0.5070867	0.50725 .30
" ... 29-30	0.5072597	0.5075018	$0 \cdot 5071621$	0.5070862	$0 \cdot 5072525$
February ... 3.4	0.5072591	0.5075014	0.5071620	0.50;0866	$0 \cdot 5072523$
$\# \quad . . .4 .5$	$0 \cdot 5072605$	0.5075022	0.5071627	$0.507087!$	$0.507253 \mathrm{t}$
" $\quad . .5$ 5-6	- 5072596	$0 \cdot 5075017$	0.5071625	0.5070876	0.5072528
Mean	0.5072599	0.5075016	$0 \cdot 5071626$	$0 \cdot 5070869$	0.5072528
Diff. from Kew	5529	5526	5522	55.30	5527

The May and June observations produced another set of values, namely :-
Table III. Time of Vibration at Dehra Dín.

There is thus a difference of $9^{\circ} \times 10^{-7}$ between the reduced times of vibration of the mean pendulum as determined by the first and second series of observations respectively.

For the deduction of g the first series of values will be used, firstly because these observations were made immediately after the arrival of the pendulums in India, so that there is less probability of any change having taken place in the lengths of the pendulums, and secondly because the average temperature during the January and February swings was very nearly the same as it had been at Kew, whereas during the May and June swings it was much higher.

[^11]The actual mean temperatures were:-
At Kew (taking account of the combination-weights of the several series of observations)

At Dehra Dún in January and February
... $14^{\circ} .1 \mathrm{C}$
... 13 . 4 ,
At Dehra Dun in May and June

$$
\begin{array}{llll}
\ldots & 28 & 5
\end{array}
$$

The coefficient of the temperature correction is $49^{9} \times 10^{-7}$: an error of one per cent in this number would thus produce a difference of about $8^{8} \times 10^{-7}$ between the two values of the time of vibration found at Dehra Dún.

Computing by the formula

$$
\mathrm{s}^{\mathbf{s}}{ }_{0} g_{0}=\mathrm{s}^{2} g
$$

and using the figures of Table II, we have for the value of g at Dehra Dún:-

Pendulum	137	138	139	140
g at Dehra Dún	$979 \cdot 062$	$979 \cdot 064$	$979 \cdot 064$	$979 \cdot 061$
Mean Value of \mathbf{g} at Dehra Dun	$979 \cdot 063$	

For the present the value 979.063 will be adopted, but the determination cannot be considered complete until the pendulums have been taken back to Kew and swung there again.

Values of g at the other stations of 1904.
For the computation of g at the other stations the mean of the two sets of times of vibration at Dehra Dún will be employed.

Table IV. Deduction of g.

Pendulum	137	138	139	140	Mean
Time of vibration					
Time of vibration Difference from Dehra Dún g	Madras.				
	0.5074612 0.5077053 0.5073646 +2018 +2037 +2026 $978 \cdot 284$ $978 \cdot 277$ $978 \cdot 281$			$\left\|\begin{array}{r} 0 \cdot 5072910 \\ +2046 \\ 9: 8 \cdot 273 \end{array}\right\|$	$\begin{array}{r} 0 \cdot 5074555 \\ +2031 \\ 978 \cdot 279 \\ \hline \end{array}$
Time of vibration Difference from Dehra Dún g	Colaba. 0.5073714 0.5076143 0.5072738 +1120 +1127 +1118 978.631 978.628 978.631			$\left\|\begin{array}{r} 0.5071981 \\ +1117 \\ 978.631 \end{array}\right\|$	$\begin{array}{r} 0.5073644 \\ +1120 \\ 978.631 \end{array}$
Time of vibration Difference from Dehra Dún g	$\begin{array}{r} 0.5073334 \\ +740 \\ 978.777 \\ \hline \end{array}$	Mussooree (Dunseverick).			$\begin{array}{r} 0 \cdot 5073267 \\ +743 \\ 978.776 \\ \hline \end{array}$
		0.5075764	$0 \cdot 5072359$	0.5071612	
		+748	+739	+748	
		978.774	$978 \cdot 777$	978.773	
Time of vibration Difference from Dehra Dún g	$\begin{array}{r} 0.5073288 \\ +694 \\ 978 \cdot 795 \end{array}$	Mussooree (Camel's Bach).			$\begin{array}{r} 0.5073222 \\ +698 \\ 978 \cdot 793 \end{array}$
		$0 \cdot 5075719$	$0 \cdot 5072318$	0.5071562	
		+703	+698	+698	
		978.791	978.793	978.793	

The agreement between the results by the different pendulums is on the whole satisfactory, and there is no evidence of a change in the length of any of the pendulums which could not with equal probability be ascribed to accidental error.

Comparison with Theoretical Values.

In Chapter I the steps that have to be taken in order to find the value of the force of gravity at a point above the sea level in a given latitude are enumerated, and the theoretical value, based on an acceleration of 978.000 C . G.S. at sea level at the Equator, was deduced both for Kew and Greenwich, using Mr. Strahan's analysis of the underlying strata. In India it will, at any rate for the present, be more convenient to assume that all masses and strata have a density of $2 \cdot 8$, i.e. the mean surface density, and by comparing the observed and computed values of the force of gravity, to ascertain where the actual density exceeds or falls short of this mean.

The difference between the observed and computed values of gravity is therefore the number that we are in search of.

It obviously leads to the same result whether we take the theoretical value for the latitude in question and apply corrections to allow for the height of the station above sea level, or apply these corrections with reversed signs to the observed value and so obtain a number which can be compared with the theoretical value at sea level.

The second is the more convenient procedure, as we thus obtain a series of normal values increasing with the latitude, and independent of the heights of the stations.

The Orographical Correction.

Correction No. 4 of Chapter I - the orographical correction-must now be dealt with.
The question has been very fully gone into in Volume V of The Account of the Operations of the G. T. Survey of India, and the elaborate computation of the correction for Basevi's Mussooree station is given in detail.

The method of treatment which I have adopted is that shewn in para. 6 on p. [187] of the above mentioned volume, but I have throughout first applied the correction which would be appropriate if the station was situated on an infinite plain, and then computed the offect of the inequality of the surface and applied it as a secondary correction. This plan has the advantage that the station is situated in the plane of the upper surface of every zone or block which has to be considered, and this renders the calculations of the attractions very simple.

Masses which stand above the horizontal plane through the station have been imagined to cancel equal masses below it, and thus the station has always been made the highest point of the region, except indeed where it was simpler, as in the case of stations at the foot of hills, to consider that all masses were standing above this plane. The computation is precisely the same in both cases.

In the diagram the shaded portions shew the masses whose attraction on the station is imagined cancelled by that of the hill tops standing above the infinite plain.

The formula employed is the ordinary one for the attraction of a cylinder upon a point in its axis, namely :-

$$
A=2 \pi G \theta\left\{h+\sqrt{r^{2}+c^{2}}-\sqrt{r^{2}+(h+c)^{2}}\right\}
$$

where $\quad G=$ acceleration due to the attraction of unit mass at unit distance
$\theta=$ density of mass
$r=$ radius of cylinder
$h=$ height of cylinder
$c=$ height of attracted point above the cylinder's upper surface.
Hence the attraction of a hollow cylinder of which the inner radius is r_{1}, the outer r_{2}, and the height h, on a point situated in its axis and in the plane of its upper surface is

$$
Z=2 \pi G \theta\left\{r_{2}-r_{1}-\left(\sqrt{r_{2}^{2}+h^{2}}-\sqrt{r_{1}^{2}+h^{2}}\right)\right\}
$$

The attraction of a sphere of radius R and density θ^{\prime} on a point on its surface is $\frac{4}{3} \pi G \theta^{\prime} R$, which in the case of the earth is called g.

Hence

$$
\frac{Z}{g}=\frac{3}{2} \cdot \frac{\theta}{\theta^{\prime}} \cdot \frac{1}{R}\left\{r_{2}-r_{1}-\left(\sqrt{r_{2}^{2}+h^{2}}-\sqrt{r_{1}^{2}+h^{2}}\right)\right\}
$$

and putting

$$
\begin{align*}
& \frac{\theta}{\theta^{\prime}}=\frac{1}{2}, R=20,900,000 \mathrm{ft} . \text { and } g=978 \mathrm{~cm} \\
& Z=0 \cdot 000035\left\{r_{2}-r_{1}-\left(\sqrt{r_{3}^{2}+h^{2}}-\sqrt{r_{1}^{2}+h^{2}}\right)\right\} \tag{1}
\end{align*}
$$

Expanding the roots the expression in brackets becomes

$$
\frac{1}{2} h^{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)-\frac{1}{8} h^{4}\left(\frac{1}{r_{1}^{3}}-\frac{1}{r_{2}^{3}}\right)+\& c .
$$

If the second term is not greater than about 2 per cent of the first it may be neglected. When r is equal to $5 h$ this condition will ordinarily be satisfied, even where the slopes are very steep.

For the immediate neighbourhood, therefore, of the stations of observation formula (1) has been used, and for the more distant parts

$$
\begin{equation*}
Z=0.000035 \times \frac{1}{2} h^{2}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \tag{2}
\end{equation*}
$$

The Division of the Region into Zones.

No fixed rule has been followed in deciding upon the radii of the successive zones, much depends upon the maps available and upon the steepness of the slopes in the neighbourhood of the station.

If only small scale maps are available, or if the immediate surroundings of the station are fairly level, it is useless to divide up the region into narrow zones.

Mussooree (Dunseverick) was the first station for which the orographical correction had to be computed and I adopted nearly the same radii as Captain Basevi had used in dealing with his station. Some of his radii gave very awkward quantities, and as they possessed no important advantages I abandoned them for round numbers of feet or miles. The number of zones is
certainly unnecessarily large and I kept them for the sake of being able to make a comparison between his method of computing and that which I have adopted, and also in order to see whether my estimation of heights would in any degree accord with his. The maps of the country to the north of Mussooree are extremely defective and the estimation of mean heights was mere guess-work, so there was room for wide divergence of opinion.

Captain Basevi broke up his zones into blocks by drawing radii at 20° intervals up to a radius of 1320 feet, and thereafter at 10° intervals, thus making 18 and 36 portions respectively; I considered this a needlessly large number and divided my zones into 8 blocks ap to a radius of 500 feet, into 12 from 500 feet to 1600 feet, into 16 from 1600 feet to 3 miles, and into 24 from 3 miles to the limits of the investigation.

The mean height of each block was estimated by the best means at hand, but outside a radius of 2 miles a cousiderable portion of each zone lay in country of which only small scale maps exist. These maps contain very few heights and those that there are almost always refer to peaks, so that the general level is extremely difficult even to guess at.

Estimating the heights of the blocks is by far the longest part of the operation, but even after this has been done the computation, so long as formula (1) has to be used, is sufficiently tedious.

Strictly speaking the effect of each block should be computed and the mean taken: it is not correct to take the mean height of the zone and compute the attraction of the resulting cylinder. This is easily seen from the formula, for $\frac{1}{n} \sum h^{\circ}$ is not $=h_{0}{ }^{9}$, where h_{0} is the mean of n values of h; the physical meaning is that when we imagine a zone brought to its mean height by levelling, the process implied is the cutting off of all the heights and the filling up of the hollows, thus all the high masses are placed at a lower level and none at a higher. Clearly, the more nearly under the attracted point a mass is, the greater will be the vertical component of its attraction, thus a levelled zone exerts a greater vertical attraction than the natural zone.

The diagram illustrates this: it represents a section through a pendulum station P.

We desire to compate the attraction of the zone enclosed between circles of radius P A and P B respectively, that is to say of the irregular cylindrical mass which is seen in section at

ASTB and $A^{\prime} S^{\prime} T^{\prime} B^{\prime}$. If CD $D^{\prime} C^{\prime}$ be the surface when the irregularities are all levelled up, we see that we have in effect cut off the two speckled heights and filled up the shaded hollows, and clearly, as far as height is concerned, the shaded portions are more favourably placed for exerting a vertical attraction on P than are the speckled ones. It is true that in the left hand portion the speckled mass has been removed to a greater distance, and that in that respect its effect has been reduced, but the reverse is the case in the right hand portion, and on the whole the lateral displacements will as often be inwards as outwards and no systematic error will be produced.

Thus every time that we take a mean height we increase the vertical attraction of the masses standing on sea level, and decrease that of the difference between the actual mass and the corresponding portion of the cylinder bounded by sea level and by a horizontal plane through the station; that is to say, when we take A B C D instead of A BTS the substitution always involves a loss of efficiency.

In the diagram P is the highest point: to consider the case of a valley station we have only to turn the section upside down; then the masses we have to deal with are those that lie above the plane of the station; hese the shaded portions are supposed to be cut off and the speckled ones filled in, which has the effect of reducing the vertical attraction of the mass; that is to say, as before, A B C D is less efficient than ABTS.

The removal of a mass from its actual position to one at the same distance but in any other azimuth has no effect on the vertical component of its attraction, and we may therefore make imaginary displacements of this sort to any extent. I have used this fact in abbreviating the computation of the attraction of those zones for which formula (2) cannot be used.

The method has been to arrange the blocks in order of elevation and then divide them into four equal groups; I have then taken the mean elevation of each group and computed the attraction of the levelled quarter-zones so formed.

This has reduced the labour by one-half in the case of the first 6 zones, by two-thirds in zones 7 to 14, by three-fourths in 15 to 29 and by five-sixths in the remainder, and, as by this means very large vertical displacements have been avoided, a fair approximation to the truth has been obtained.

Limits of the Investigation.

It will be observed that the investigation has not been carried beyond a radius of 35 miles. In Basevi's calculation the enquiry is carried to much greater distances, but the advantage of this may be questioned, while the labour involved must be considerable.

Examining Basevi's figures (p. [173] of Vol. V. Op. G. T. S.) we see that the total effect of all the masses standing above sea level is

$$
9 \cdot 5536 \text { vibrations per day. }
$$

If N be the number of vibrations per day made by his pendulums,

$$
d g=\frac{2 g}{N} d N
$$

putting $g=978$ and $N=86012$
we have, if $d N=9 \cdot 5586$,

$$
\begin{aligned}
d g & =0.02274 \times 9.5536 \\
& =0.2171
\end{aligned}
$$

Now the attraction of an infinite plain 6920 feet high is

$$
g \times \frac{3}{4} \times \frac{h}{R}=0.2433
$$

Hence the difference obtained, using all Basevi's zones, is

$$
0.0262
$$

If we omit the zones beyond 35 miles, taking a proportionate part of the zone between $29 \cdot 4$ and $37 \cdot 6$ miles, $d N$ becomes $9 \cdot 4318$ and $d g \quad 0 \cdot 2142$, and the difference between this and the attraction of the infinite plain is

$$
0.0291
$$

Thus by omitting the outer zones a difference of 0.0029 in the orographical correction is produced.

This difference is not very large, its amount is not very certain and yet to obtain it a great deal of trouble must have been taken and many maps must have been examined.

If instead of analysing the country outside the 35 -mile radius in detail, we look at it in a general way and assume that a plain 6920 feet high and of indefinite extension occupies the northern half, and that the southern half is all at sea level we shall obtain the following figures.

Attraction of infinite plain 6920 feet high all round	\ldots		$\stackrel{c m}{0 \cdot 2433}$
," ,, disc of same height 35 miles in radius		\ldots	$0 \cdot 2378$
Difference $=$ attraction of plain outside 35 -mile radius	0.0055
Half difference	0.0028
Attraction of 35-mile disc + half outer plain	0.2406
, , , actual masses within 35 -mile radius			0-2142
Difference $=$ orographical correction		...	0.0264
by Basevi's analysis			0.0262

In this case therefore the approximate method is justified and it will in many instances be found possible to make some simple generalisation which will take sufficient account of all but the nearest masses.

The Effect of Curvature.

No account has so far been taken of the curvature of the earth's surface, nor is it intended to do so. The effect of applying the corrections which are under discussion is to produce a value of g at sea level which shall be comparable with γ_{0} the theoretical value depending on the latitude; as we recede from the station the effect of the surface masses, conceived as lying on a plane tangential to the spheroid, becomes rapidly smaller, and at a distance of 100 miles* or so becomes insensible. Up to this distance the effect of the earth's curvature is inappreciable. Beyond this the curvature becomes the most important element in producing a vertical attraction at the station of observation, but the difference in the attraction of such distant masses on the station and on a point at sea level vertically below it is now so small as to be negligible, and it is this difference that is required when we are reducing to sea level. Hence neither for proximate nor for distant masses should the effect of curvature be taken into account. \dagger

[^12]In Tables VI \& VII, the figures relating to the orographical correction at Dunseverick are given. Δh is the difference bebween the height of the quarter-zone, formed according to the method explained above, and the height of the station. In the column with the heading "effect" is shewn the value of the quantity

$$
\left\{r_{2}-r_{1}-\left(\sqrt{r_{3}^{2}+\Delta h^{2}}-\sqrt{r_{1}^{2}+\Delta h^{2}}\right)\right\}
$$

this number when multiplied by 0.000035 gives the value of the attraction of a complete cylinder of height Δh, therefore the mean of the four "effects" is the measure of the sum of the attractions of the four quarter-cylinders.

After zone 31 the simpler formula (2) has been used and it has not been necessary to group the blocks, for the computation in full is quite short. Here the quantity "effect" has the same meaning as before : it is equal to

$$
\frac{1}{2} \times \frac{\Delta h^{2}}{n} \times\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \times 0.0001894
$$

The factor 0.0001894 is required because here r_{1} and r_{2} are expressed in miles.
Finally the sum of all the effects is taken, and this, multiplied by 0.000035 , is the difference between the attraction of a disc 35 miles in radius and 7129 feet thick and the actual attraction of the existing masses within the same radius.

- Table VI. Orographical Correction at Mussooree (Dunseverick).

Height 7129 feet.

No. of Zone	Inner Radius	Outer Radius	Δh	Effect	Mean Effect	No. of Zone	Inner Radius	Outer Radius	$\Delta \boldsymbol{h}$	Effect	Mean Effect
1	$\begin{aligned} & \text { feet } \\ & 150 \end{aligned}$	foet 200	$\begin{gathered} \text { feet } \\ 5 \\ 39 \\ 51 \\ 58 \\ \hline 26 \end{gathered}$	0.0 1.2 2.0 2.6	1.5	17	feet 2000	feet 2200	$\begin{gathered} \text { feet } \\ 339 \\ 520 \\ 707 \\ 895 \\ \hline \end{gathered}$	2.6 59 10.5 16.0	8.8
2	200	250	49 76 96 31	1.1 2.7 4.0 0.3	$2 \cdot 1$	18	2200	2420	$\begin{aligned} & 394 \\ & 550 \\ & 762 \\ & 795 \end{aligned}$	$\begin{array}{r} 3.3 \\ 6.0 \\ 11.1 \\ 16.7 \end{array}$	$9 \cdot 3$
3	250	300	61 96 129	1.2 2.8 4.7	$2 \cdot 3$	19	2420	$\begin{aligned} & 2640 \\ & \left(\frac{1}{2}\right. \text { mile) } \end{aligned}$	$\begin{aligned} & 425 \\ & 599 \\ & 831 \end{aligned}$	$\begin{array}{r} 3.0 \\ 5.9 \\ 1.0 \end{array}$	$8 \cdot 9$
4	300	350	46 84 121 161	0.5 1.6 3.2 5.2	$2 \cdot 6$	20	2640		1009 478 682 967	15.6 7.5 17.0 32.7	$26 \cdot 1$
			56 $\times 19$	0.6 2.4				(3 mile)	$\begin{array}{r}967 \\ 1180 \\ \hline\end{array}$	$\begin{array}{r} 32.7 \\ 47 \cdot 1 \\ \hline \end{array}$	
5	350	400	146 201	3.4 3.9	3.1	21	3300		$\begin{array}{r}482 \\ 793 \\ \hline 158\end{array}$	5.8 1.53 3.3	23.9
6			84 151	1.7 5.3				(${ }^{3}$ mile)	$\begin{array}{r} 1155 \\ 1380 \\ \hline \end{array}$	$31 \cdot 3$ 43.3	23.9
6	400	500	199 258	$\begin{array}{r} 8 \cdot 7 \\ 13.3 \end{array}$	$7 \cdot 3$	22			573 830	5.8 12.1	
7	500	600	$\begin{array}{r}78 \\ 186 \\ \hline\end{array}$	10 50 8.3				(if mile)	$\begin{array}{r} 1055 \\ 1430 \\ \hline \end{array}$	$\begin{array}{r} 19.2 \\ 34.1 \\ \hline \end{array}$	
			$\begin{array}{r} 236 \\ 3.36 \end{array}$	$\begin{array}{r} 8.2 \\ 14.7 \\ \hline \end{array}$	73				605 963	4.9 129	
8	600	700	93 194	1.1 4.2	$6 \cdot 6$	23	4620	$\left({ }^{5} \mathrm{~s}\right.$ mile) $)$	$\begin{aligned} & 1242 \\ & 1493 \end{aligned}$	19.9 18.2	$16 \cdot 3$
			$\begin{array}{r} 264 \\ 379 \\ \hline \end{array}$	$\begin{aligned} 7.4 \\ 13.7 \\ \hline \end{aligned}$					830 1130	12.9 23.6	
9	700	800	$\begin{array}{r}96 \\ \mathbf{2 0 9} \\ \hline\end{array}$	0.9 3.6 .78	$6 \cdot 5$	24	5280	$\begin{gathered} 6600 \\ (1 \nmid \text { miles }) \end{gathered}$	$\begin{aligned} & 1130 . \\ & 1405 \\ & 1 \leq 80 \end{aligned}$	12.9 35.9 44.8	$29 \cdot 3$
			441						855	9.2	
10	800	900	$\begin{aligned} & 119 \\ & 235 \\ & 369 \end{aligned}$	1.0 3.6 8.3	$6 \cdot 7$	25	6600	$\left(1 \frac{7920}{\text { milos }}\right.$	$\begin{aligned} & 1255 \\ & 1605 \\ & 1880 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 31.4 \\ & 42.4 \end{aligned}$	25.6
			499	13.9					830	$6 \cdot 2$	
11	900	1000	$\begin{aligned} & 158 \\ & 264 \\ & 426 \end{aligned}$	1.4 3.6 8.7	$6 \cdot 7$	26	7920	$\left(14^{9240} \text { miles }\right)$	$\begin{aligned} & 1455 \\ & 1780 \\ & 2205 \\ & \hline \end{aligned}$	$\begin{array}{r} 18.6 \\ 27.7 \\ 418 \\ \hline \end{array}$	23.6
			. 54.3	13.1					730	3.6	
12	1000	1200	179 324 486	2.8 8.3 17.2	13.7	27	9240	$\left(\begin{array}{c} 10560 \\ \left(2^{2} \text { miles }\right) \end{array}\right.$	$\begin{aligned} & 1430 \\ & 2005 \\ & \hline \end{aligned}$ 2555	13.6 26.4 42.2	21.5
			6.31	26.6					580		
13	1200	1400	214 398 526	2.6 8.8 14.6	129	28	10560	$\begin{gathered} 13200 \\ (2 \$ \text { miles }) \end{gathered}$	$\begin{array}{r} 500 \\ 14.30 \\ 2680 \\ 3180 \\ \hline \end{array}$	$\begin{array}{r} 3.2 \\ 19^{\circ} 2 \\ 65.5 \\ 90.8 \\ \hline \end{array}$	$44^{\prime} 7$
14	1400	1600	$\begin{aligned} & 724 \\ & \hline 249 \\ & 436 \\ & 568 \\ & 771 \end{aligned}$	$\begin{aligned} & 25 \cdot 4 \\ & \hline 2 \cdot 6 \\ & 8 \cdot 0 \\ & 13 \cdot 0 \\ & 22 \cdot 2 \end{aligned}$	115	29	13200	$\begin{gathered} { }^{15840} \\ (3 \text { mile }) \end{gathered}$	$\begin{array}{r} 480 \\ 1505 \\ 1885 \\ 3555 \\ \hline \end{array}$	$\begin{array}{r} 1 \cdot 5 \\ 14 \cdot 2 \\ 50 \cdot 0 \\ 76 \cdot 3 \\ \hline \end{array}$	$35^{\circ} 5$
15	1600	1800	$\begin{aligned} & 301 \\ & 430 \\ & 586 \\ & 821 \\ & \hline \end{aligned}$	3.2 6.1 10.7 20.0	10.0	30	15840	$\begin{gathered} 21120 \\ (4 \text { miles }) \end{gathered}$	$\begin{aligned} & 1033 \\ & 2000 \\ & 28 j 0 \\ & 3783 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.4 \\ 31.2 \\ 63.0 \\ 109.4 \end{array}$	$53^{\circ} 0$
16	1800	2000	304 477 642 864	$\begin{array}{r} 2.6 \\ 6.0 \\ 11.0 \\ 17.9 \\ \hline \end{array}$	$9 \cdot 4$	31	21120	$\begin{aligned} & 26400 \\ & (5 \text { miles }) \end{aligned}$	$\begin{aligned} & 1200 \\ & 1967 \\ & 3033 \\ & 4037 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.8 \\ 18.2 \\ 43.0 \\ 76.6 \\ \hline \end{array}$	36-2

Table VII. Orographical Correction at Mussooree (Dunseverick). , Height 7129 feet.

Zone 32		Zone 33		Zone 34		Zone 35		Zone 36	
r_{1}	5 Miles	r_{1}	6 Miles	r_{1}	7 Milee	r_{1}	81 Miles	r_{1}	10 Miles
r_{3}	6	r_{3}	7	r_{2}	8t	r_{8}	\%	T_{2}	12 "
$\frac{1}{r_{2}}$	$0 \cdot 200$	$\frac{1}{r_{2}}$	$0 \cdot 167$	$\frac{1}{r_{1}}$	$0 \cdot 148$	$\frac{1}{r_{1}}$	$0 \cdot 118$	$\frac{1}{r_{1}}$	$0 \cdot 100$
$\frac{1}{r_{2}}$	0-167	$\frac{1}{r}$	0.143	$\frac{1}{r_{2}}$	$0 \cdot 118$	$\frac{1}{r}$	0-100	$\frac{1}{r_{2}}$	0.083
Δh	$(\Delta h)^{2} \times 10^{-4}$	Δh	$(\Delta h)^{2} \times 10^{-4}$	$\Delta \boldsymbol{h}$	$(\Delta h)^{2} \times 10^{-4}$	Δh	$(\Delta h)^{2} \times 10^{-4}$	Δh	$(\Delta h)^{2} \times 10^{-4}$
feet 800	64	feet 600	36	feet 2600	676	feet 2600	676	feet 1100	121
300	9	500	25	900	81	700	49	1100	121
1100	121	1300	169	700	49	1100	121	1500	225
2100	441	1600	256	1400	196	1400	196	600	36
1600	256	2100	441	1800	324	1400	196	1100	121
1300	169	1900	361	1700	289	1600	256	1400	196
800	64	800	64	800	64	700	49	700	49
1700	289	2100	441	300	9	1100	121	1300	169
2400	576	2900	841	1600	256	2600	676	1600	256
3500	1225	3900	1521	3100	961	3600	1296	3100	961
4200	1764	4300	1849	4.300	1849	4500	2025	4300	1849
4500	2025	4600	2116	4700	2209	4900	2401	5000	2500
4300	1849	4500	2025	4700	2209	4900	2408	5000	2500
4400	1936	4600	2116	4900	2401	5100	2601	5100	2601
4200	1764	4500	2025	4800	2304	5100	2601	5300	2809
4200	1764	4500	2025	4800	2304	5000	2500	5200	2704
3800	1444	4200	1764	4500	2025	4900	2401	5100	2601
2600	676	3100	961	3800	1444	4400	1936	4900	2401
600	36	600	36	2600	676	3600	1296	4500	2025
1600	256	600	36	3500	1225	3900	1521	4300	1849
3600	1296	3900	1521	2800	784	2300	529	3100	961
3100	961	3600	1296	4100	1681	2100	441	2100	441
1100	121	1600	256	3100	961	3100	961	2800	784
600	36	1600	256	3100	961	2100	441	2100	441
Mean	798	Mean	935	Mean	1081	Mean	1154	Mean	1197
Effect	$24^{\circ} 9$	Effect	$21 \cdot 3$	Effect	$25^{\circ} 6$	Effect	19.7	Fffect	$19^{\prime} 3$

Table VII. (Continued).

Zone 37		Zone 38		Zone 39		Zone 40		Zone 41		Zone 42	
r_{1}	12 Miles	r_{1}	14 Miles	r_{1}	17 Miles	r_{1}	20 Miles	r_{1}	25 Miles	r_{1}	30 Miles
r_{2}	14 "	r_{2}	17 "	r_{2}	20 "	r_{2}	25	r_{2}	30 "	r_{2}	35 "
$\frac{1}{r_{1}}$. 0.083	$\frac{1}{r_{1}}$	$0 \cdot 071$	$\frac{1}{r_{1}}$	0.059	$\frac{1}{r_{1}}$	$0 \cdot 050$	$\frac{1}{r_{1}}$	0.04	$\frac{1}{r_{1}}$	0.033
$\frac{1}{r^{2}}$	0.071	$\frac{1}{r_{2}}$	0.059	$\frac{1}{r_{2}}$	0.050	$\frac{1}{r_{3}}$	$0 \cdot 040$	$\frac{1}{r_{2}}$	0.033	$\frac{1}{r_{8}}$	0.029
$\Delta \boldsymbol{h}$	$(\Delta h)^{2} \times 10^{-4}$	Δh	$(\Delta h)^{2} \times 10^{-4}$								
feet		feet		feet		feet		feet		feet	
3100	961	1600	256	1100	121	800	64	1100	121	900	81
1600	256	900	81	1100	121	800	64	1600	256	900	81
500	25	1600	256	1100	121	600	36	1100	121	1100	121
1100	121	1100	121	2100	441	2100	441	1600	256	2100	441
800	64	1600	256	3100	961	900	81	1100	-121	1600	256
1100	121	1600	256	2600	676	2100	441	1600	256	1600	256
1100	121	1000	100	1600	256	2100	441	1100	121	1600	256
1300	169	1600	256	2100	441	1600	256	1600	256	1100	121
1300	169	2100	441	1600	256	2100	441	1600	256	1100	121
1600	256	3100	961	3400	1156	4100	1681	4100	1681	1100	121
3600	1296	4900	2401	5200	2704	5400	2916	5900	3481	4600	2116
4300	1849	4900	2401	5400	2916	5700	3249	5300	2809	5800	3364
5200	2704	4800	2304	4900	2401	4800	2.304	5500	3025	5700	3249
5200	2704	4600	2116	4600	2116	5600	31.36	5800	3364	6000	3600
5100	2601	5000	3500	4600	2116	5200	2704	5800	3364	6000	3600
5300	2809	5200	2704	4700	2209	4700	2209	5700	3249	6000	3600
5300	2809	5500	3025	5400	2916	4700	2209	5400	2916	5900	3481
5300	2809	5500	3025	5600	3136	5200	2704	5700	3249	5700	3249
5200	2704	5500	3025	5600	3136	5300	2809	4800	2304	5300	2809
5400	2916	4100	1681	4100	1681	2100	441	1600	256	4600	2116
4100	1681	1600	256	3100	961	3600	1296	1500	225	1200	144
2600	676	2100	441	1600	256	1000	100	900	81	500	25
2600	676	2100	441	1600	256	800	64	900	81	2100	441
2600	676	1600	256	1600	256	1000	100	900	81	2100	441
Mean	1299	Mean	1232	Mean	1317	Mean	1258	Mean	1330	Mean	1420
Effect	14.8	Effect	$14^{\circ} 0$	Effect	11.2	Effect	1199	Effect	$8 \cdot 8$	Effect	5.4

Total effect of all zones $=667 \cdot 6$

$$
\text { Attraction }=667.6 \times 0.000035=0.0234
$$

For the region lying outside the 35 -mile radius the same assumption may be made as was suggested in the case of Basevi's station on the Camel's Back, namely, that the northern half consists of a plain at the level of the station and that the southern half is at sea level.

Hence, for the reduction to sea level we have

	$g \frac{2 h}{R}=$	$+0.668$
	$g \frac{3}{4} \frac{h}{R}=$	-0.251
Orographical correction within a radius of 35 miles +0.023		
, "	beyoud a radius of 35 miles	$+0.003$
	Total	+0.443

Orographical Correction at Mussooree (Camel's Back).

Although the correction for the Camel's Back station has been so fully discussed in Volume V "Op. G.T.S." yet, for the sake of the valuable test which would be afforded by a comparison of the result of an independent computation with that ohtained by Basevi, I redivided the surrounding area into zones and blocks and estimated the heights afresh.

As the distance between the Camel's Back and Dunseverick is so small (under 1 mile) I only carried the process to a radius of 3 miles, and beyond that assumed that the blocks coincided with those appertaining to the zones round Dunseverick, and accepted the heights which had already been estimated. As the Camel's Back station is 200 feet lower than Dunseverick the differences in height, which enter into the computation, have of course been altered.

Tables VIII and IX contain the results arrived at; but the details of the outer zones have been given more concisely than was done in the case of Dunseverick.

Table VIII. Orographical Correction at Mussooree (Camel's Back).
Height 6924 feet.
(Computation using new estimation of heights).

$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { Zone } \end{aligned}$	Inner Radius	Outer Radius	$\Delta \boldsymbol{h}$	Effect	Mean Effect	$\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Zone } \end{array}\right\|$	Inner Radius	Outer Radius	Δh	Effect	Mean Effect
	feet	feet					feet	feet			
1	150	200	$\begin{array}{r}24 \\ 64 \\ 94 \\ 117 \\ \hline 49\end{array}$	1 3 6 8 1	$4 \cdot 5$	17	3000	2200	405 702 824 924	$\begin{array}{r} 4 \\ 11 \\ 14 \\ 17 \\ \hline \end{array}$	11.5
2	200	250	49 87 119 154	1 3 6 8	$4 \cdot 5$	18	2200	2420	$\begin{aligned} & 422 \\ & 674 \\ & 862 \end{aligned}$	3 9 14	$11^{\circ} 0$
			62	2					999	18	
3	250	300	104 139 194	3 5 9	$4 \cdot 8$	19	2420	$\begin{gathered} 2640 \\ \left(\frac{1}{2}\right. \text { mile) } \end{gathered}$	$\begin{aligned} & 412 \\ & 674 \\ & 962 \end{aligned}$	$\begin{array}{r} 3 \\ 7 \\ 14 \end{array}$	10.8
				1					1086	19	
4	300	35°	114 162 209	3 5 8	$4 * 3$	20	2640	3300	$\begin{array}{r} 412 \\ 812 \\ 1087 \end{array}$	$\begin{array}{r} 6 \\ 24 \end{array}$	$30 \cdot 8$
			82	2				(\% mile)	1249	52	
5	35°	400	134 184 232	3 5 8	$4 * 5$	21	3300	3960	349 824 1074	$\begin{array}{r} 3 \\ 16 \end{array}$	$23^{\circ} 0$
			107 167	3				(3 mile)	1424	46	
6	400	500	212 254	10	$8 \cdot 3$	22	3960		274 599	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$18 \cdot 5$
		600	159 197	4 5		22	3900	($\frac{1}{8}$ mile)	$\begin{array}{r}1174 \\ 1612 \\ \hline\end{array}$	$\begin{aligned} & 23 \\ & 43 \end{aligned}$	185
7	500	600	242 314	$\begin{array}{r} 5 \\ 8 \\ 13 \end{array}$	7×5				$\begin{aligned} & 262 \\ & 549 \end{aligned}$	0 4	
8	600	700	209 237	4	$7 \cdot 8$	23	4620	ll^{5280} mile)	1212 1724	$\begin{aligned} & 19 \\ & 37 \end{aligned}$	$15^{\circ} 0$
8	600	700	$\begin{array}{r} 277 \\ 367 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 13 \\ \hline \end{array}$	78				259 624	18	
9	70	800	217 264	4	$7 \cdot 5$	24	5280	$\begin{gathered} 6600 \\ (1 \neq \text { miles }) \end{gathered}$	$\begin{array}{r}1324 \\ 2024 \\ \hline\end{array}$	$\begin{array}{r}32 \\ 72 \\ \hline\end{array}$	$28 \cdot 3$
			3.3 401	8 12					237	\bigcirc	
10	800	900	182 309 386	2	7•0	25	6600	$\begin{gathered} 7920 \\ (1+\text { miles }) \end{gathered}$	874 1424 2499	10 25 72	$26 \cdot 8$
			4.31	11					324	1	
11	900	1000	149 344 427	1 6 9	$6 \cdot 8$	26	7920	$\begin{gathered} 9240 \\ \left(1 \frac{3}{3} \text { miles }\right) \end{gathered}$	$\begin{array}{r} 974 \\ 1599 \\ 2674 \\ \hline \end{array}$	$\begin{array}{r}9 \\ 23 \\ 60 \\ \hline\end{array}$	23.3
				11					349		
12	1000	1200	159 402 479	3 12 17	13.8	27	9240	$\begin{gathered} 10560 \\ (2 \text { miles }) \end{gathered}$	$\begin{array}{r} 974 \\ 1874 \\ 2699 \\ \hline \end{array}$	6 23 48	19\%
13	1200	1400	169 479 552	2 12 16	13.5	28	10560	$\begin{gathered} 13200 \\ \left(2 \frac{1}{2} \text { miles }\right) \end{gathered}$	1699 2174 2999	3 25 43 82	$38 \cdot 3$
			714	24							
14	1400	1600.	$\begin{aligned} & 214 \\ & 544 \\ & 604 \\ & 816 \end{aligned}$	2 12 15 24	13.3	29	13200	$\begin{gathered} 15840 \\ (3 \text { miles }) \end{gathered}$	$\begin{array}{r}349 \\ 1624 \\ 2299 \\ 3049 \\ \hline\end{array}$	17 3.3 57	$27 \cdot 0$
15	1600	1800	298 508 705 830	3 8 16 21	12.0	30	15840	$\begin{aligned} & 21120 \\ & (4 \text { miles) } \end{aligned}$	$\begin{array}{r} 830 \\ 1800 \\ 2650 \\ 3580 \\ \hline \end{array}$	5 25 55 98	$45^{\circ} 8$
16	1800	2000	347 589 769 912	3 9 14 20	11.5	31	21120	$\begin{aligned} & 26400 \\ & (5 \text { miles) } \end{aligned}$	$\begin{aligned} & 1000 \\ & 1760 \\ & 28.30 \\ & 3860 \end{aligned}$	5 15 37 69	35'5

Table IX. Orographical Correction at Mussooree (Camel's Back).
Height 6924 feet.
(Computation using new estimation of heights).

No. of Zone	32	33	34	35	36	37	38	39	40	41	42
r_{1} r_{2}	(5 miles	6 miles	7 miles $8 \frac{1}{2} \mathrm{l}$	$8 \frac{1}{2}$ miles 10	10 miles 12	12 miles 14	14 miles 17	17 miles 20 m	20 miles	25 miles	30 miles
Effect	$\Delta \boldsymbol{h}$	Δh	$\Delta \boldsymbol{h}$	$\Delta \boldsymbol{h}$	Δh	Δh	$\Delta \boldsymbol{Z}$	$\Delta \boldsymbol{h}$	$\Delta \boldsymbol{h}$	Δh	$\Delta \boldsymbol{h}$
	feet 600	feet 400	$\begin{aligned} & \text { feet } \\ & 2400 \end{aligned}$	feet 2400	feet 900	$\begin{aligned} & \text { feet } \\ & 1400 \end{aligned}$	feet 1400	feet 900	feet 600	feet 900	feet 700
	100	300	700	500	900	300	700	900	600	1400	900
	900	1100	500	900	1300	900	1400	900	400	900	1900
	1900	1400	1200	1200	400	600	900	1900	1900	1400	1400
	1400	1900	1600	1200	900	900	1400	2900	700	900	1400
	1100	1700	1500	1400	1200	900	1400	2400	1900	1400	1400
	600	600	600	500	500	1100	800	1400	1900	900	900
	1500	1900	100	900	1100	1100	1400	1900	1400	1400	900
	2200	2700	1400	2400	1400	1400	1900	1400	1900	1400	900
	3300	3700	2900	3400	2900	3400	2900	3200	3900	3900	4400
	4000	4100	4100	4300	4100	4100	4700	5000	5200	5700	5600
	4300	4400	4500	4700	4800	5000	4700	5200	5500	5100	5500
	4100	4300	4500	4700	4800	5000	4600	4700	4600	5300	5800
	4200	4400	4700	4900	4900	4900	4400	4400	5400	5600	5800
	4000	4300	4600	4900	5100	5100	4800	4400	5000	5600	5800
	4000	4300	4600	4800	5000	5100	5000	4500	4500	5500	5700
	3600	4000	4300	4700	4900	5100	5.300	5200	4500	5200	5500
	2400	2900	3600	4200	4700	5000	5300	5400	5000	5500	5100
	400	400	2400	3400	4300	5200	5300	5400	5100	4600	4400
	1400	400	3300	3700	4100	3900	3900	3900	1900	1400	1000
	3400	3700	2600	2100	2900	2400	1400	2900	3400	1300	300
	2900	3400	3900	1900	1900	2400	1900	1400	800	700	1900
	900	1400	2900	2900	2600	2400	1900	1400	600	700	1900
	400	1400	2900	1900	1900	2900	1400	1400	800	700	700
	$22 \cdot 0$	$18 \cdot 9$	22.9	$17 \cdot 6$	17.4	13.3	12.6	$10 \cdot 1$	10.8	$8 \cdot 0$	4.9

Total effect of all zones
Attraction
...

$$
\ldots=
$$

$$
\begin{aligned}
& \dddot{651} \cdot 2 \times 0.000035=651 \cdot 2 \\
&=0.0228
\end{aligned}
$$

It has already been shewn on $\mathbf{p} .57$ that for the irregularities beyond the 35 -mile radius an allowance of 0.0028 may be made; my estimations of height therefore yield a total orographical correction of

$$
0.0228+0.0028=0.0256
$$

Basevi's result was 0.0262 , so that the agreement is better than could have been expected.
For the Camel's Back Station the reduction to sea level is as follows:-

$$
\begin{aligned}
& g \frac{2 h}{R}=+0.649 \\
& g \frac{3 h}{4 R}=-0.243
\end{aligned}
$$

$$
\text { Orographical correction within } 35 \text {-mile radius } \quad+0.023
$$

$$
\text { " beyond 35-mile } \quad \text { Total } \frac{+0.003}{+0.432}
$$

Recomputation using Bassui's heights.

The method which Col. Herschel devised for reducing the labour of the computation* was not the same as that which I have adopted and I have considered it worth while to recompute the orographical correction for Mussooree (Camel's Back), using Captain Basevi's heights and my method.

The results are given in Tables X and XI.

* Vide Vol. V Op. G. T. S. p. [164]

Table X. Orographical Correction at Mussooree (Camel's Back). Height 6924 feet.
(Recomputation using Basevi's heights).

Effect of zones up to a radius of $5 \cdot 318$ miles $=526 \cdot 4$
Attraction $=526.4 \times 0.000035=0.0184$

Table XI. Orographical Correction at Mussooree (Camel's Back).
(Recomputation using Basevi's heights.)

	36	37	38	39	40	41	42	43
r_{1} r_{2}	$5 \cdot 318 \mathrm{ml}$. 6.791 m	6.791 ml. 8.672 ,	8.672 ml. 10.075 l	$10 \cdot 075 \mathrm{ml}$ $14 \cdot 142 \mathrm{~m}$	$14 \cdot 142 \mathrm{ml}$ $18 \cdot 059 \mathrm{~m}$	$18 \cdot 059 \mathrm{ml}$ 23.061	$\begin{aligned} & 23 \cdot 061 \mathrm{ml} . \\ & 29 \cdot 449 \mathrm{n} \end{aligned}$	$\left\lvert\, \begin{aligned} & 29 \cdot 449 \mathrm{ml} . \\ & 37 \cdot 606 \mathrm{~m} \end{aligned}\right.$
Effect	$\Delta \boldsymbol{h}$	$\Delta \boldsymbol{h}$	$\mathbf{\Lambda} \boldsymbol{h}$	Δh	$\Delta \boldsymbol{h}$	$\Delta \boldsymbol{h}$	Δh	$\Delta \boldsymbol{Z}$
	feet 1920	feet 2420	feet 2420	feet 2920	feet 3220	feet 2920	feet 1920	feet 920
	1420	1920	1920	1920	1920	2420	2420	920
	1920	420	420	920	1420	1420	920	920
	1720	1420	1080	920	1920	1420	920	80
	1920	2220	420	920	2420	2920	2420	1080
	2220	2220	1420	1920	2920	2920	1920	920
	2520	2220	1620	1420	3420	2420	920	1080
	2220	2420	1820	1420	3420	2920	3420	930
	1220	1420	1920	1420	2920	3920	3420	2920
	220	80	1420	1420	920	3420	2420	2920
	220	220	80	80	1420	2920	3920	2920
	1420	1920	1920	2920	2920	1920	3930	3920
	1920	2920	2920	3420	3420	3420	1920	3920
	2920	3420	3420	3920	3920	2920	39^{20}	4420
	3620	3730	3920	4220	4420	4420	4920	4920
	3920	3920	4420	4220	4920	5420	5820	5420
	4020	4420	4620	4920	5220	5420	5620	5620
	3920	4520	4720	5020	5020	5220	5220	5620
	4020	4420	4620	4920	4920	4820	5420	5820
	4020	4420	4620	4920	4620	4720	5820	6020
	4020	4420	4620	4920	4520	4920	5920	6020
	4020	4420	4820	5020	4620	4620	5920	6020
	3820	4420	4920	5120	4920	4420	5920	6020
	3620	4220	4920	5120	5120	4420	5720	6030
	3220	4420	4720	5020	5120	4920	5420	6020
	2720	3920	4620	5020	5120	5020	5220	5720
	2220	3620	4420	4920	5120	5320	5420	5220
	1120	3420	3920	4920	5220	5220	5220	5220
	1820	2920	3420	4920	4420	3920	4420	3520
	3220	3420	3920	4430	4420	4420	3420	1620
	3920	3420	3420	2920	2920	4220	2920	920
	3420	3i20	2920	1920	3420	3420	3420	1920
	2920	3720	3420	2920	1920	920	2920	1920
	. 2620	3420	3920	3420	2420	930	1920	1920
	2420	2920	3420	3920	$2+20$	1420	420	920
	1920	2620	2920	3420	2930	2420	920	920
	31*2	32.9	19.6	$36 \cdot 9$	$22 \cdot 3$	$16 \cdot 6$	$14^{\prime 2}$	$10 \cdot 5$

Effect of zones from $5 \cdot 318$ miles to $\mathbf{3 7} \cdot 606$ miles $=184 \cdot 2$
Attraction $=184 \cdot 2 \times 0.000035=0.0064$

The method of grouping blocks in order of height has been used up to a radias of 5.318 miles; beyond this, formula (2) has been employed, and the height of each block separately taken into account.

Up to 5.318 miles the calculation in Vol. V. Op. G. T. S. gives as the correction to the vibration number

$$
8 \cdot 6010,
$$

cm
which is equivalent to a correction of $0 \cdot 1956$ to the value of g.
The attraction of a disc of this radius and 6920 feet high is 0.2129 ;
my computation of the defect due to inequalities yields 0.0184 and hence the attraction of the actual masses within a radius of $5 \cdot 318$ miles is

$$
0 \cdot 2129-0 \cdot 0184=0 \cdot 1945
$$

As has already been explained, the effect of all levelling processes implied in the employment of mean heights, is to increase the attraction of the masses, the fact therefore that the new result is slightly less than the old one is favourable to the new method.

Between the radii of $5 \cdot 318$ and 37.606 miles the new computation gives as the defect due to inequalities

$$
0 \cdot 0064
$$

The attraction of a zone bounded by cylinders of the above radii and 6920) feet high is, by formula (2),

$$
0.0256
$$

Hence the attraction of the actual masses is

$$
0.0256-0.0064=0.0192
$$

Col. Herschel's computation for the same zone gives in terms of N $0 \cdot 8450$
and this when converted into terms of the acceleration in centimeters is also

$$
0 \cdot 0192
$$

Madras and Colaba.

No orographical corrections have been applied at Madras and Colaba. It might be thought that some allowance should be made for the presence of the sea; but, as has been remarked already, the present object is to reduce to sea level, so as to obtain numbers which may be compared with the computed values of γ_{0}, and just as a uniform density has been assigned to all masses lying above sea level, so we must for the present refrain from differentiating between the substances which lie below it.

Orographical Correction at Dehra Dun.

In Volume V. Op. G. T. S. p. [177] the effect of the inequalities of the surface on the pendulum station at Dehra Dún is computed. The effect on the vibration number, of the zones up to a radius of 30 miles, is found to be

$$
3 \cdot 305
$$

Which corresponds to a difference of

$$
0 \cdot 0752 \text { in } g .
$$

The attraction of a disc 2240 feet high and 30 miles in radius is $0 \cdot 0780$
So that the orographical correction within a radius of 30 miles is 0.0028

The total effect of all the zones up to an indefinitely great distance is found to be 3•18
This corresponds to 0.0724
The attraction of an infinite disc 2240 feet thick is
0.079

The difference is 0.0066
Thus the attraction of the zones outside a radius of 30 miles is

$$
0 \cdot 0066-0.0028=0.0038
$$

It appears that all the particulars of Basevi's estimation of the heights of the compartments were not recoverable and as a check I have estimated the masses outside the 30 -mile radius anew, as follows :-

Azimuth (from south by west)

0° to 120°		feet
120 „ 180 5000	"
180 , ,250	...	\ldots	... 9000	,"
250 , 270 5000	"
270 , 315 4000	",
315 „ 360 900	,

The orographical correction due to the difference between these masses and the infinite plain through the station outside the 30 -mile radius is

$$
0 \cdot 0013
$$

So that the total orographical correction becomes

$$
\begin{aligned}
0.0028 & +0.0013 \\
& =0.0041
\end{aligned}
$$

which is in good agreement with Basevi's result.

In Table XII the observed values of g, the reductions to sea level, the theoretical values of γ_{o} and the differences are exhibited.

Table XII. Synopsis of Results.

Station	Latitude	Height	Observed g	$g \frac{2 h}{R}$	$g \frac{3}{4} \frac{h}{R}$	0	Value at sea level $g_{0}{ }^{\prime \prime}$	γ_{0}	$g_{0}{ }^{\prime \prime}-\gamma_{0}$
Debra Dún ...	$\begin{array}{cc}\circ & 1 \\ 30 & 19\end{array}$	$\begin{aligned} & \text { feet } \\ & 2239 \end{aligned}$	$979 * 063$	+0.210	-0.079	+0.004	979 ${ }^{19} 8$	979 324	$-0 \cdot 126$
Madras	$13 \quad 4$	20	$978 \cdot 279$	+0.002	-0.001	\bigcirc	978.280	978•266	+0.014
Colaba	$18 \quad 54$	34	$978 \cdot 631$	+0.003	-0.001	-	$978 \cdot 633$	978.545	+0.088
Mussooree (Dunseverick)	$30 \quad 27$	7129	978•776	+0.668	-0.251	+0.026	979 219	979'334	-0.115
Mussooree (Camel's Back)	$30 \quad 28$	6924	$978 \cdot 793$	+0.649	-0. 243	+0.026	979.225	979 335	-0.110

CHAPTER III.

The Operations in the year 1904-05.

The locale of operations during this field season lay along the chain of triaugles known as the Calcutta Meridional Series.

This line was selected by Colonel Burrard, Superintendent of Trigonometrical Surveys, for several reasons. It crosses the subterranean chain of excessive density, the existence of which was pointed out by him in professional paper No. 5: latitude observations recently made at stations of this series had shewn that the local deflection of the plumb-line must be largely influenced by invisible causes: the series runs right up to the foot of the Himalayas and meets them at a point whence the roads to Darjeeling and along the Nepal frontier afford nusual facilities for reaching points of considerable altitude: and, lastly, this part of the country was comparatively free from plague which was very bad in the United Provinces and in the Punjab.

As no houses were to be found in the neighbourhood of several of the stations which were selected, some portable arrangement had to be considered. It was thought that a tent of good quality would probably answer, and a large single poled tent, divided into two rooms by a curtain, was accordingly purchased. Inside one of the rooms an inner roof, consisting of ruberoid laid on a bamboo frame-work, was provided. An inspection of the results will shew that the protection from the sun's radiation was not sufficient, and that the temperature was far from steady.

During the summer of 1904 a new pendulum room had been prepared at Dehra Dún in the building which contains the great Photoheliograph. The new room was much superior to that in which the observations of January and June 1904 had been made, particularly as regards the temperature conditions.

The new station is due east of the old one and 590 feet distant from it. The floor of the new room is 2 ft . higher than that of the old one.

Sets of observations were made in the new room and in the tent, or field station, both before proceeding to the field and after returning from it.

A difficult question has been how to deal with the observations taken in an unsteady temperature.

Iu Dehra Dún the mean hourly variations in the tent for each day and night were in degrees centigrade:-

in November	$\begin{gathered} \text { Night } \\ =-05 \\ -.14 \end{gathered}$		Day 1.03 0.60
and in May	- 21	$+$	$\cdot 45$
	- 27	+	$\cdot 76$
	- 19	$+$	$\cdot 57$

In the case of observations made in a room where the temperature varies but little, and that slowly, so long as the room is kept closed, and only commences to change when the observations begin, on account of the opening of the door, and of the presence of the observer and the necessary lamps, a correction of the form $K \frac{\mathrm{~d} \theta}{\mathrm{dt}}$ is probably capable of expressing the difference between the temperature of the pendulum and that indicated by the thermometers. But when the principal cause of the change of temperature is the sun and the weather, it does not seem probable that such an expression, which only takes into account variations in the temperature over a short period, will be adequate. The difference of temperature must be a function not only of the rate of increase of temperature but also of the time that has elapsed since the rise began, and of the conditions preceding the rise. It seems impossible in the absence of data respecting those conditions to arrive at any satisfactory estimate of the difference in question, and I have thought it best, in the case of the tent stations, to apply no correction for lag, and to determine g by comparing the observed time of vibration with that obtained in the tent at Dehra Dún, trusting to the similarity of the conditions to eliminate the errors due to wrongly estimated temperatures.

At several of the stations houses more or less suitable were available and at two of those where there were no houses, huts of bamboo mats plastered with mud were made. In the latter and in the less suitable of the former the conditions did not correspond exactly either to those of the tent or of the room at Dehra Dún, and g has been deduced firstly by comparing the observed time of vibration with that obtained at the Dehra Dún field station applying no lag correction, and, secondly, by comparing with that obtained in the pendulum room applying a lag correction; finally the mean of the two results has been taken.

In this way the magnitude of the uncertainty in the deduced g, to which the unsteady temperature gives rise, is exhibited.

At stations where houses not greatly inferior to the pendulum room were available, comparison has only been made with the observations made in the latter, the lag correction being applied as usual.

Throughout this season the time observations were made by Extra Assistant Superintendent Hanuman Prasad with Transit Instrument No. 2 by Troughton \& Simms. The half-seconds pendulum clock S.R. 238 was used to actuate both the chronograph and the flash-box. The chronograph was the same one as had been used in the former season, namely the heavy drum chronograph made by Messrs. Warner and Swasey.

The pendulum stand was always erected on a brick pillar specially built for it, and at the stations where the tent was used small blocks of bricks in cement were made for the feet of the clock stand.

The same thermometers were used as during the former season, viz: Nos. 105368 and 105369 by Negretti and Zambra.

The pressure of the air was measured by a mercurial barometer on Fortin's principle; an aneroid barometer was also carried and read, chiefly as a safeguard against accidental gross errors in reading the mercurial one.

The humidity was determined by readings of wet and dry bulb thermometers.
At the end of January Professor Dr. O. Hecker of the Prussian Geodetic Institute joined me while I was at Jalpaiguri. Dr. Hecker had been engaged upou an important series of observations with barometers and hypsometers, made during voyages to Australia, Japan and elsewhere, for determining the force of gravity in mid-ocean, but he was also equipped with a set of pendulums and the necessary accessories, and the excellent suggestion was made by Professor Helmert that he should visit India on his way home from Japan, join the pendulum party wherever it might be, and swing his pendulums alongside of ours.

I selected Jalpaiguri as the most convenient place for the simultaneous observations, and was so fortunate as to secure as an observatory a good room in which the temperature was satisfactorily steady.

By means of these observations an independent value of g at Dehra Dún is obtained. For my work gives the difference Dehra Dún - Jalpaiguri and Dr. Hecker's gives Potsdam - Jalpaiguri, whence Potsdam-Dehra Dún becomes known. The absolute value of g at Potsdam, which has recently been determined with extreme care, is $981 \cdot 274$. The value which has been adopted for Kew, namely $981 \cdot 200$ is based on the Potsdam determination, and rests on the measure of the difference made by Mr. G. R. Putnam in 1900. We have an indirect check on Mr. Patnam's result through the chain Kew-Dehra Dún-Jalpaiguri-Potsdam. The details of Dr. Hecker's observations are given at the end of this Chapter.

THE STATIONS.

Dehra Dun.

The new pendulum room is situated in the observatory which contains the large photoheliograph.

The new pendulum pillar is due east of Baseri's station, 590 feet from it and 2 feet higher.
The co-ordinates of new pendulum station are :-

Latitude	\ldots	\ldots.	30	19	29
Longitude	\ldots	\ldots.	78	8	22
Height above mean sea level	\ldots.		2241	feet	

The Dehra Dún field station is 62 feet north and 5 feet east of the pillar in the pendulum room, and the ground on which it stands is 1 foot lower than the floor of the room.

In November 1904, before starting for the field, observations were taken both in the room and at the field station.

In the room the flexure correction was determined five times.
8th November
$46 \cdot 7 \times 10^{-7}$
$42 \cdot 4$
Adopted Correction $\quad-44^{8} \times 10^{-7}$
At the field station it was determined four times.

	$\begin{aligned} & \text { 21st November } \\ & 41: 3 \times 10^{-7} \\ & 41 \cdot 2 \end{aligned}$	24th November $\begin{aligned} & 40 \cdot 7 \times 10^{-7} \\ & 41 \cdot 7 \end{aligned}$
Adopted Correction	$-41^{8} \times 10^{-7}$	

Cuttack G. T. S.

No. XXXV of the East Coast Series.

The pendulum station was in a small house, which had originally been erected as a cholera hospital but had never been used. The pillar was about 480 feet north and 23 feet west of the Cuttack G. T. S.

The co-ordinates of the pendulum pillar are :-

Latitude	\ldots		\ldots	20	29
5					
Longitude	\ldots	\ldots	85	52	1
Height	\ldots	\ldots	92 feet		

The temperature conditions were not good, chiefly owing to there being a space between the walls and the roof for ventilation. The results have been taken out both with and without a lag correction, for comparison with the two Dehra Dún values.

The flexure correction was determined six times.

December 12th

$$
\begin{aligned}
& 61 \cdot 4 \times 10^{-7} \\
& 60 \cdot 7
\end{aligned}
$$

December 16th
$52^{8} \cdot 4 \times 10^{-2}$
$51 \cdot 4$

December 17th
$51^{8} \cdot 4 \times 10^{-x}$
52.5

There is large change between the results of the 12 th and 16 th due undoubtedly to the gradual hardening of the cement in the pillar, which at this station it had not been possible to build beforehand. For the observations between the 12 th and 16 th a flexure correction of -56^{4} $\times 10^{-7}$ has been adopted, and for those on the 16 th and 17 th one of $-52^{5} \times 10^{-7}$.

Chatra G. T. S.

No. XVIII of the Calcutta Meridional Series.

The station of the principal triangulation has been completely washed away by the Bhairab river. But its position was fairly well known to the villagers and I do not think there can be an error of more than 50 yards in the point which they showed me. The pendulum pillar was 300 yards south and 550 yards west of the most probable position of the old 'Tower station. The country is perfectly flat for miles in every direction and it has been assumed that the ground level at the new station is the same as it was at the old one.

The co-ordinates of the pendulum station are :-

			\circ	$\prime \prime$	$\prime \prime$
Latitude	\ldots	\ldots	24	12	40
Longitude	\ldots	\ldots	88	23	27
Height above mean sea level	\ldots	64 feet			

The tent formed the observatory.
The flexure correction was determined five times as follows:-
December 30th January lst January 3rd
$63^{8} 1 \times 10^{-7}$
$58 \cdot 7 \times 10^{-7}$
$59 \cdot 9 \times 10^{-\pi}$
$63 \cdot 6$
$57 \cdot 4$
The following values have been adopted :-

December "	$\left.\begin{array}{l} 30 \\ 31 \end{array}\right\}$	$-6 i \times 10^{-4}$
December January	$\left.\begin{array}{c}31 \\ 1\end{array}\right\}$	-61×10^{-7}
January	$1\}$	$-59 \times 10^{-\tau}$

Kisnapur G. T. S.

No. XXIX of the Calcutta Meridional Series.

The pendulum pillar was situated $\mathbf{8 5 1}$ feet south and 83 feet east of the G. T. station and on ground 4 feet lower than that surrounding the base of the old Tower. The latter was not entire and the upper mark-stone could not be found, so there is a little uncertainty as to the height, for the ground is uneven, but there cannot be an error of more than 3 feet.

The co-ordinates of the pendulum station are :-

Latitude	\ldots	\ldots	25	2	26
Longitude	\ldots	\ldots	88	28	29
Height abore mean sea level	\ldots.	113	feet		

The tent formed the observatory.
The flexure correction was determined seven times :-

January 17	January 19	January 21	January 23
$64^{\circ} \cdot 6 \times 10^{-7}$	$57^{\prime} \cdot 4 \times 10^{-7}$	$56^{\bullet} \cdot 5 \times 10^{-7}$	$56^{8} \cdot 7 \times 10^{-7}$
$65 \cdot 4$	$55 \cdot 9$	$54 \cdot 4$	

The following values of the correction have been adopted :-

January	$17-18$	$-6 i$	
$"$	$18-19$	-61	10^{-7}
$"$	$19-20$	-57	$\prime \prime$
$"$	$21-22$	-56	\prime
$"$	$22-23$	-57	$"$

There was a good deal of cloud and rain at this station and star observations were only obtained on the 17 th , 20th, 21 st and 23 rd . The five sets of observations therefore only yield two independent results, namely, (1) those from the evening of 17 th to the morning of the 20th, and (2) those from the evening of the 21st to the morning of the 23rd.

Jalpaiguri.

The pendulum station was situated in a room of a building belonging to the District Treasury. The pillar was 123 feet west and 63 feet north of the station of the triangulation called Jalpaiguri s. The latter is on the roof of another of the 'I'reasury buildings.

The co-ordinates of the pendulum station are:-

Latitude	\ldots	26	31	16
Longitude	\ldots	88	44	13
Height above mean sea level	268	feet		

One of the lines of principal levelling runs up the railway which passes through Jalpaiguri, and there is a beuch-mark at the station. A subsidiary line of levels was run from this benchmark to the pendulum room.

The floor was of thick concrete and isolated pillars were not provided.
Dr. Hecker's apparatus and mine were set up at opposite ends of the room, the clock being between them. The same clock, namely S.R. 238, was used for timing both sets of pendulums.

The pillars for both instruments had to be erected hurriedly after the arrival of the observers, and in consequence the cement was not hard when work began. The result of this is clearly seen in the flexure correction.

I determined this correction eight times with the following results :-

$\begin{aligned} & \text { January 31st } \\ & 6 \text { P.m. } \end{aligned}$	February 1st 6 p.м.	February 2nd 4 P.M.	February 3rd 6 P.м.
$\stackrel{8}{54^{\circ} \cdot 2} \times 10^{-7}$	$\begin{aligned} & 8 \\ & 43 \cdot 6 \\ & 44.6 \end{aligned}$	$\begin{gathered} 8 \\ 44^{\circ} 1 \times 10^{-7} \\ 44^{.5} \end{gathered}$	$\begin{aligned} & \quad 8 \\ & 42^{8} 8 \\ & 40 \cdot 3 \end{aligned}$
53.2×10^{-7}	$44 \cdot 1 \times 10^{-7}$	44.3×10^{-7}	41.6×10^{-7}

By plotting these values as the ordinates of points, of which the abscisse were intervals of time, and drawing a smooth curve through them the following values of the flexure correction were obtained :-

January	31 Night	-50	$\times 10^{-7}$
February	1 Day	-46	,
,	1 Night	-44	"
"	2 Day	-44	,
;	2 Night	-43	"
,	3 Day	-42	,

The temperature conditions were good and g has been determined by comparison with the observations in the pendulum room at Dehra Dún, applying the usual lag correction.

Kesarbari G. T. S.

No. XLIII of the Calcutta Meridional Series.

The pendulum pillar was situated 194 feet east and 24 feet south of the G. T. S. and on ground 5 feet lower than that at the base of the Tower. The upper mark-stone of the latter was missing and there is therefore an uncertainty of about 2 feet in the height.

The co-ordinates of the pendulum station are :-

Latitude					
Longitude	\ldots	\ldots	26	7	41
Helght above mean sea level	\ldots	88	31	26	
	\ldots	204 feet			

The tent formed the observatory, but as an additional protection against variations of temperature a hut of thatch and matting was erected inside the tent.

Bad weather was encountered here; star observations were only obtained on February 14th and 18th. The sky was overcast from $11 \mathrm{p} . \mathrm{m}$. on the 14 th until $10 \mathrm{a} . \mathrm{m}$. on the 18 th. The four sets of observations only gield one value of the time of vibration.

The flexure correction was determined six times:-

February 14th	February 15 th	February 18th
8	8	8
$73^{8} \cdot 4 \times 10^{-7}$	$69 \cdot 4 \times 10^{-7}$	$68^{8} \cdot 4 \times 10^{-7}$
$71 \cdot 2$	$72 \cdot 9$	$69 \cdot 8$
Adopted correction	$-71^{8} \times 10^{-7}$	

Ramchandpur.

The pendulum station was situated 3390 feet north and 2355 feet east of Rámchandpur G. T. S. No. XXXVII of the Calcutta Meridional Series, and on ground 14 feet higher than that at the base of the Tower.

The co-ordinates of the pendulum station are :-

Latitude	\ldots	\ldots	25	40	57
Longitude	\ldots	\ldots	88	32	58
Height above mean sea level	\ldots			132	feet

At this station the tent was not used but a room was constructed of bamboos, thatch and mud plaster under a large mango tree. It was to obtain the advantage of the shade of this tree that a point so distant from the Tower was selected.

The flexure correction was determined seven times:-

25 th February	26 th February	28 th February
$66^{\circ} \cdot 0 \times 10^{-7}$	$69^{s} \cdot 4 \times 10^{-7}$	$64 \cdot 3 \times 10^{-5}$
$69 \cdot 6$		$63 \cdot 2$
$71 \cdot 2$		
$67 \cdot 6$		

Adopted values of the correction

$25-26$ th February	-69×10^{-7}
$26-27$	-68
$27-28$	-66

Siliguri.

A bungalow belonging to the Jalpaiguri District Board was lent me for the pendalum observations. It is situated about $1 \frac{1}{2}$ miles W.S. W. of the Siliguri railway station. 'Ihere is a bench-mark of the principal levelling on the step of the bungalow and a secondary triangulation station about 200 yards further south, at the side of the main road to Titalia.

The co-ordinates of the pendulum station are:-

Latitude	\ldots	\ldots	26	41	47
Longitude	\ldots	\ldots	88	24	50
Height abore mean sea level	\ldots		387	feet	

The floors of the two main rooms of the bungalow were of wood, but that of the bath-room of the larger of the two was of concrete. I therefore built the pendulum pillar in the bath-room and observed through the door. The clock also was erected in the bath-room.

The roof of this room was of iron and I had a layer of earth laid upon it, even so however the temperature conditions were not good aud g has been determined by both of the methods described on p. 71.

The observations were greatly delayed by bad weather. I arrived on the 8th March but could get no star observations till the 12th; the 14th and 15 th were also cloudy and the closing observations were not obtained until the 16 th.

Flexure was observed several times before work began, but the observations which have been utilised in deducing the eorrection were only 4 in number, viz.,

The pendulum pillar was erected in a room with a northerly aspect on the ground floor of the Bengal Secretariat office.

The floor of the room was found by vertical angles and levelling to be 202 feet below the station of the triangulation on Observatory Hill, and the pendulum pillar was approximately 400 feet south and 500 feet west of that station.

The co-ordinates of the pendulum pillar are therefore :-

Latitude	\ldots	\ldots	27	2	47
Longitude	\ldots	\ldots	88	16	8
Height above mean sea level	\ldots		6966	feet	

The room was a very suitable one, the temperature conditions were satisfactory and the clock and pendulum pillars free from liability to tremors.

The flexure correction was determined five times.

20 th March	23 rd March
$57^{8} \cdot 4 \times 10^{-7}$	$56 \cdot 0 \times 10^{-7}$
$58 \cdot 2$	$54 \cdot 5$
$60 \cdot 7$	

Adopted Correction

$$
-57^{8} \times 10^{-7}
$$

Kurseong.

The pendulum pillar was built in the bath-room of the north room of the Dâk or Inspection bungalow. This bungalow is situated close to the railway on its eastern side and about a quarter of a mile above the railway station.

The level of the floor was determined by spirit-levelling from the railway station. A traverse was run to a station of the secondary triangulation in order to obtain the latitude and longitude.

The co-ordinates of the pendulum station are :-

Latitude	\ldots	\ldots	26	59	51
Longitude	\ldots	\ldots	88	16	45
Height above mean sea level	\ldots		4913	feet	

The floor of the bath-room was of cement and of good quality bat that of the room was of planks and very unsteady. The clock was fixed to the wall of the room.

Flexure was observed seven times.

26th March $35^{2} \cdot 7 \times 10^{-7}$	27th March $35^{3} 3 \times 10^{-7}$	30th March $34^{8} 7 \times 10^{-7}$	$\begin{gathered} \text { lst April } \\ 35^{*}: 8 \times 10^{-8} \end{gathered}$
$35 \cdot 4 \times 10$		34.0	$35 \cdot 3 \times 10$
ted Correction		$35^{8} \times 10^{-7}$	

Sandakphu.

The hill of this name is a peak of a remarkable spur which extends from Kinchinjunga to the plains. The Nepal frontier runs along this ridge and a road has been constructed almost parallel to the frontier on the British side of it. There are rest-houses at intervals along this road and that at Sandakphu was kindly placed at my disposal by the Deputy Commissioner of Darjeeling.

The floors of the rest-house are planked bat I was able to erect the pendulum pillar in the bath-room in the same way as I had done at Siligari and Kurseong. The clock was fixed to the wall of the room.

There is a station of the triangulation on the peak of Sandakpha and the pendulum pillar was 560 feet north and 1150 feet east of it.

The elevation of the floor of the room was 163 feet less than that of the triangulation station.

The co-ordinates of the pendulum station are :-

The observations at this station were carried out ander somewhat adverse circumstances. The spring had been an unusually severe one and the snow-fall had been heavy, so that the road was only jast open at the time when the party started from Kurseong, although the date of starting had been put as late as possible. The march was accomplished without serions difficulty, but after the instruments had been erected and during the progress of the observations very bad weather was met with. No star observations were obtained on the 9th of A pril which was the first night: on the 10th there were clouds till 10 p.m. then however it cleared for two hours; a good time determination was made, and I was enabled to begin observing the pendulums. The next evening it was clear from $7 \mathrm{p} . \mathrm{m}$. till about $10 \mathrm{p} . \mathrm{m}$. and good observations were obtained. On the 12th there was a severe snowstorm with high wind in the afternoon and the sky remained cloudy all night though hope of success was not abandoned till 2 a.m. On the 13th there was a heavy fall of snow in the afternoon followed by a perfect hurricane of wind which blew all night : the sky however was clear from about 8 p.m. and Babu Hanuman Prasad succeeded in getting a sufficient number of stars, though in the face of great diffieulties, for the wind was sending the powdery snow whirling through the meridional slit, and there seemed to be imminent danger of the whole tent being blown away; it was moreover intensely cold. The advantage of having a large and stable transit-instrument and a good dram chronograph was clearly shewn, for no trustworthy observations by the eye and ear method, or with a light instrument, would have been possible on any of the nights of our stay.

The room in the rest-house was good and it was possible to keep the temperature fairly steady.

The flexure correction was determined six times.

Dehra Dun.

On returning to Dehra Dún observations were again made both at the field station and ia the pendulum room.

At the field station flexure was observed six times.

9th May	10th May	16th May
$85^{6} 4 \times 10^{-7}$		$36^{\cdot} 2 \times 10^{-4}$
$39 \cdot 5 \times$	$36 \cdot 1 \times 10^{-7}$	$36 \cdot 8 \times 10$
$37 \cdot 5$		
Correction	-37×10^{-1}	

In the room it was observed four times.

	17th May	21st May
	$\frac{41^{8} \cdot 5}{40 \cdot 2} \times 10^{-7}$	$\begin{aligned} & 42 \cdot \frac{8}{4} \times 10^{-7} \\ & 42 \cdot 5 \end{aligned}$
Adopted Correction		

Table I. Details of the Observations-(Continued).

time of vibration at dehra dun.
In the accompanying table the results of all the observations at Dehra Dún between November 1904 and May 1905 are collected, the times of vibration of each pendulum being shewn separately.

Table II. Times of Vibration at Dehra Dún.

Dato	137	138	139	140	Mean

Field station (Tent).
November 1904.

$\begin{array}{rr} \text { Nov. } & 21-22 \\ " \quad 22-23 \end{array}$	$\begin{array}{r} 0.5072573 \\ 2596 \end{array}$	$\begin{array}{r} 8 \\ 0.5074987 \\ 4996 \end{array}$	$\begin{array}{r} 8 \\ 0.5071593 \\ 1614 \end{array}$	$\begin{array}{r} 8 \\ 0.5070837 \\ 0835 \end{array}$	$\begin{array}{r} 8 \\ 0.5072497 \\ 2510 \end{array}$
Mean	$0 \cdot 5072585$	$0 \cdot 5074992$	$0 \cdot 5071604$	0.5070836	0.5072504

May 1905.

$\begin{array}{cc} \text { May } & 12-13 \\ " & 13-14 \\ " & 14-15 \end{array}$	$\begin{array}{r} 0.5072571 \\ 2576 \\ 2577 \end{array}$	$\begin{array}{r} 0 \cdot 5074995 \\ 4995 \\ 4987 \end{array}$	$\begin{array}{r} 0 \cdot 5071600 \\ 1598 \\ 1598 \end{array}$	$\begin{array}{r} 0.5070849 \\ 0848 \\ 0832 \end{array}$	$\begin{array}{r} 0.5072504 \\ 2504 \\ 2499 \end{array}$
Mean	$0 \cdot 5072575$	0'5074992	0.5071599	0.5070843	0.5072502
Change May-Nov.	10	\bigcirc	- 5	$\pm \quad 7$	2

The accordance between the values obtained in new pendulum room is by no means satisfactory and it appears possible that some change in the lengths of the pendulums may have taken place. The observations in the tent do not support this idea, but in an unsteady temperature, such as that met with in the tent, great reliance cannot be placed on the results.

To examine into the question of a possible change in the lengths of the pendulums, the differences between the time of vibration of each and the mean of the four have been taken out for each station, and tabulated. If there has been any change,-other than one in the same direction and of the same amount in all,-it will be revealed by a change in these differences.

Table III.—Differences between Individual Pendulums and Mean Pendulum.

Station	Date	137	\checkmark	138	v	139	v	140	v
Dehra Dun Pendulam Room	$$	$\begin{array}{r} 81 \\ -\quad 81 \\ 80 \\ 70 \\ 76 \end{array}$	$\begin{array}{r}-7 \\ +\quad 7 \\ \hline \quad 2 \\ \hline\end{array}$	$\begin{array}{r} 2491 \\ \hline 2495 \\ 2501 \\ 2491 \end{array}$	$\begin{array}{rr} + & 1 \\ - & 3 \\ + & 9 \end{array}$	$\begin{array}{r} 895 \\ +\quad 901 \\ 901 \\ 898 \end{array}$	$\left\lvert\, \begin{array}{r} 11 \\ 5 \\ 5 \\ 8 \end{array}\right.$	$\begin{array}{\|} +\quad 1679 \\ 1676 \\ 1668 \\ 1670 \end{array}$	$\begin{array}{r} 19 \\ +\quad 16 \\ 8 \\ 10 \end{array}$
Dehra Dun Tent ...	$\begin{array}{cc} \text { Nov. } 21.22 \\ " \quad 22.23 \end{array}$	$\begin{aligned} & 76 \\ & 86 \end{aligned}$	$-\begin{array}{r} 2 \\ 12 \end{array}$	$\begin{aligned} & 2490 \\ & 2+86 \end{aligned}$	+ 2	$\begin{aligned} & 904 \\ & 896 \end{aligned}$	$-\quad 2$	$\begin{aligned} & 1660 \\ & 1675 \end{aligned}$	$\begin{array}{r} 0 \\ +\quad 15 \end{array}$
Cuttack	$\begin{array}{ccc} \text { Dec. } & 12-13 \\ " & 13-14 \\ \# & 14.15 \\ " & 16.17 \end{array}$	$\begin{aligned} & 78 \\ & 74 \\ & 73 \\ & 75 \end{aligned}$	$\left\lvert\, \begin{array}{ll} - & 4 \\ & 0 \\ + & 1 \\ - & 1 \end{array}\right.$	$\begin{aligned} & 2487 \\ & 2496 \\ & 2491 \\ & 2496 \end{aligned}$	$\left\lvert\, \begin{array}{ll} + & 5 \\ - & 4 \\ + & 1 \\ - & 4 \end{array}\right.$	$\begin{aligned} & 904 \\ & 895 \\ & 902 \\ & 902 \end{aligned}$	$\begin{array}{r} 2 \\ -\quad 11 \\ 4 \\ 3 \end{array}$	1661 1677 1663 1668	$\begin{array}{r} +\quad 1 \\ 17 \\ 3 \\ 8 \end{array}$
Chatra	$\begin{array}{ll} \text { Dec. } & \begin{array}{l} 30.31 \\ \text { 301.Jan. } \\ \text { Jan. } \\ \hline 1.2 \end{array} \end{array}$	$\begin{aligned} & 74 \\ & 69 \\ & 68 \end{aligned}$	$\begin{array}{r}0 \\ +\quad 5 \\ \hline\end{array}$	$\begin{aligned} & 2498 \\ & 2503 \\ & 2487 \end{aligned}$	$\begin{array}{r} -\quad 6 \\ +\quad 5 \\ +\quad 5 \end{array}$	$\begin{aligned} & 906 \\ & 908 \\ & 889 \end{aligned}$	$\begin{array}{r} 0 \\ +\quad 2 \\ -\quad 17 \end{array}$	$\begin{aligned} & 1667 \\ & 1666 \\ & 1667 \end{aligned}$	$+\quad 7$ 6 7
Kisnapur	$\begin{array}{cc} \text { Jan. } & 17.18 \\ " & 18.19 \\ " & 19.20 \\ " & 21.22 \\ " & 22.23 \end{array}$	$\begin{aligned} & 78 \\ & 72 \\ & 70 \\ & 71 \\ & 73 \end{aligned}$	$-\quad 4$ $+\quad 2$ 4 3 1	$\begin{aligned} & 2494 \\ & 2496 \\ & 2488 \\ & 2495 \\ & 2495 \end{aligned}$	$\left\lvert\, \begin{array}{r} - \\ \hline \end{array}\right.$	$\begin{aligned} & 904 \\ & 908 \\ & 900 \\ & 906 \\ & 910 \end{aligned}$	$\begin{array}{ll} - & 2 \\ + & 2 \\ - & 6 \\ & 0 \\ + & 4 \end{array}$	$\begin{aligned} & 1669 \\ & 1662 \\ & 1660 \\ & 1659 \\ & 1659 \end{aligned}$	$\begin{array}{r} +\quad 9 \\ \\ 2 \\ -\quad 1 \\ -\quad 1 \end{array}$
Jalpaiguri ...	$\begin{array}{cc} \text { Jan. } & 31-\text { Feb. } 1 \\ \text { Feb. } & 1 \cdot 2 \\ " & 2 \cdot 3 \end{array}$	$\begin{aligned} & 73 \\ & 75 \\ & 66 \end{aligned}$	$\begin{array}{ll} + & 1 \\ + & 1 \\ + & \end{array}$	$\begin{aligned} & 2493 \\ & 2493 \\ & 2496 \end{aligned}$	$\left\lvert\, \begin{array}{rr} 1 \\ 1 \\ 4 \end{array}\right.$	$\begin{aligned} & 908 \\ & 911 \\ & 902 \end{aligned}$	$1 \begin{aligned} & + \\ & \hline \end{aligned}$	$\begin{aligned} & 1656 \\ & 1659 \\ & 1660 \end{aligned}$	$\text { - } \begin{array}{r} 4 \\ 1 \\ 0 \end{array}$
Kesarbari ...	Feb. 14.15 $"$ $15-16$ $"$ $16-17$ $"$ 17.18	78 78 76 78 78	$\left\lvert\, \begin{array}{r} -4 \\ 4 \\ 2 \\ 4 \end{array}\right.$	$\begin{aligned} & 2489 \\ & 2487 \\ & 2497 \\ & 2491 \end{aligned}$	$\begin{array}{ll} + & 3 \\ & 5 \\ - & 5 \\ + & 1 \end{array}$	$\begin{aligned} & 912 \\ & 903 \\ & 922 \\ & 929 \end{aligned}$	$\begin{array}{rr} + & 6 \\ \hline & 3 \\ +\quad 16 \\ \hline \end{array}$	$\begin{aligned} & 1655 \\ & 1663 \\ & 1652 \\ & 1658 \end{aligned}$	$\begin{array}{ll} - & 5 \\ + & 3 \\ - & 8 \\ & 2 \end{array}$
Ramchandpur ...	$\begin{array}{rl} \text { Feb. } & 25-26 \\ " & 26-27 \\ " & 27.28 \end{array}$	$\begin{aligned} & 77 \\ & 93 \\ & 77 \end{aligned}$	$\left\lvert\, \begin{array}{r} 3 \\ 19 \\ 3 \end{array}\right.$	$\begin{aligned} & 2501 \\ & 2497 \\ & 2+90 \end{aligned}$	$\begin{array}{r} -\quad 9 \\ +\quad 5 \\ +\quad 2 \end{array}$	$\begin{aligned} & 895 \\ & 941 \\ & 900 \end{aligned}$	$\left\lvert\, \begin{array}{ll} - & 11 \\ + & 35 \\ -\quad 6 \end{array}\right.$	$\begin{aligned} & 1684 \\ & 1650 \\ & 1665 \end{aligned}$	$\begin{aligned} & +\quad 24 \\ & +\quad 10 \\ & +\quad 5 \end{aligned}$
Siliguri ...	$\begin{array}{rr} \text { Mar. } & 12 \cdot 13 \\ " & 13-14 \\ " & 14-15 \\ " & 15-16 \end{array}$	$\begin{aligned} & 66 \\ & 72 \\ & 77 \\ & 67 \end{aligned}$	$\begin{array}{r} + \\ + \\ -\quad 2 \\ +\quad 3 \\ \hline \end{array}$	$\begin{aligned} & 2495 \\ & 2495 \\ & 2492 \\ & 2512 \end{aligned}$	$\left\lvert\, \begin{array}{r} 3 \\ 3 \\ 0 \\ 0 \end{array}\right.$	$\begin{aligned} & 908 \\ & 912 \\ & 909 \\ & 919 \\ & \hline \end{aligned}$	$\begin{array}{r} 2 \\ + \\ 3 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & 1652 \\ & 1656 \\ & 1661 \\ & 1662 \end{aligned}$	$\begin{array}{r}+8 \\ -\quad 4 \\ +\quad 1 \\ \hline\end{array}$
Darjooling	$\begin{array}{rr} \text { Mar. } 20.21 \\ " & 21-22 \\ " & 22.23 \end{array}$	$\begin{aligned} & 75 \\ & 74 \\ & 71 \end{aligned}$	$\begin{array}{r} -\quad 1 \\ +\quad 0 \\ +\quad 3 \end{array}$	$\begin{aligned} & 2482 \\ & 2491 \\ & 2494 \end{aligned}$	$\left\|\begin{array}{rr} + & 10 \\ - & 1 \end{array}\right\|$	$\begin{array}{r} 900 \\ 903 \\ 908 \end{array}$	$\begin{array}{r} -\quad 6 \\ +\quad 3 \\ +\quad 2 \end{array}$	$\begin{aligned} & 1658 \\ & 1661 \\ & 1658 \end{aligned}$	$\begin{array}{ll} - & 2 \\ + & 1 \\ - & 2 \end{array}$
Kurseong ...	$\begin{array}{cc} \text { Mar. } & 27.28 \\ " & 28.29 \\ " & 29.30 \\ " & 31 . \Delta \text { p. } 1 \end{array}$	$\begin{aligned} & 74 \\ & 76 \\ & 67 \\ & 73 \end{aligned}$	$\begin{array}{r}0 \\ -\quad 2 \\ +\quad 7 \\ \\ \hline\end{array}$	$\begin{aligned} & 2470 \\ & 2486 \\ & 2489 \\ & 2486 \end{aligned}$	$\begin{array}{r} 22 \\ 6 \\ 3 \\ 6 \end{array}$	$\begin{aligned} & 898 \\ & 905 \\ & 905 \\ & 908 \end{aligned}$	$\begin{array}{r} -\quad 8 \\ 1 \\ +\quad 2 \\ +\quad 2 \end{array}$	$\begin{aligned} & 1644 \\ & 1655 \\ & 1651 \\ & 1653 \end{aligned}$	-16 $-\quad 5$ 9 7
Sandakphu ...	$\begin{array}{cc} \text { Ap. } & 10.11 \\ " & 11.12 \\ " & 12.13 \end{array}$	71 70 65	+ + 4 9	$\begin{aligned} & 2481 \\ & 2491 \\ & 2483 \end{aligned}$	$\left\lvert\, \begin{array}{r} 11 \\ 1 \\ 7 \end{array}\right.$	$\begin{aligned} & 899 \\ & 905 \\ & 902 \end{aligned}$	$\left\lvert\, \begin{array}{r}-7 \\ 1 \\ 4\end{array}\right.$	$\begin{aligned} & 1653 \\ & 1656 \\ & 1649 \end{aligned}$	- 7
Dehra Dun Tent ...	$\begin{array}{cc} \text { May } & 12.13 \\ " & 13.14 \\ " & 14.15 \end{array}$	$\begin{aligned} & 67 \\ & 72 \\ & 78 \end{aligned}$	$\left\lvert\, \begin{aligned} &+ 7 \\ &-\quad 4 \end{aligned}\right.$	$\begin{aligned} & 2491 \\ & 2491 \\ & 2488 \end{aligned}$	$+\begin{aligned} & 1 \\ & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 904 \\ & 906 \\ & 901 \end{aligned}$	- 2	1655 1656 1667	$\begin{array}{r} \\ -\quad 5 \\ +\quad 7 \\ \hline\end{array}$
Dehra Dun Pendulum Room	$\begin{array}{rr} \text { May } & 17-18 \\ " & 18.19 \\ " & 19-20 \end{array}$	$\begin{aligned} & 7^{2} \\ & j 0 \\ & 72 \end{aligned}$	$\begin{array}{\|c} + \\ 2 \\ 4 \\ 2 \end{array}$	$\begin{aligned} & 2491 \\ & 2483 \\ & 2500 \end{aligned}$	$\left[\begin{array}{r} 1 \\ + \\ -\quad 8 \end{array}\right.$	$\begin{aligned} & 915 \\ & 930 \\ & 918 \end{aligned}$	$+\begin{array}{r} 9 \\ 24 \\ 12 \end{array}$	$\begin{aligned} & 1649 \\ & 1622 \\ & 165^{2} \end{aligned}$	(11
Mean	.	74	...	2492	...	906	...	1660	...

94

In the above table the columns with the heading v contain the residuals when the mean of all the differences appertaining to each pendulum is subtracted from the individual values. On the whole it does not appear that Nos. $13 \boldsymbol{\gamma}$ and 138 have changed their lengths; there is, it is true, a long series of positive residuals, from about the middle of March onwards, in the case of both these pendulums, but the amounts are not large and may either be accidental, or the reflex effect of a more important change in one of the other pendulums. No. 139 has a series of negatives at the beginning and three large positives at the end: the latter are, Iam inclined to think. accidental and, by increasing the mean, they have been to some extent the cause of the negatives. In the case of No. 140 there is certainly evidence of a progressive change. The unbroken series of positives at the beginuing, then the belt of uncertain sign extending from about January 20th to March 20th, followed by the series of negatives, seem to indicate a gradual increase in the time of vibration. The change in the residuals from November to May seems to have been about 18 (the value - 38 on May 18th-19th is I think due to an accidental error). This being the effect of the real change on the difference between the mean pendulum and No. 140, the real change must be

$$
\frac{4}{3} \times 18=24
$$

If this were the only evidence it would be justifiable to infer that the length of this pendulum had been changing and to assign an iucreasing value to the time of vibration at Dehra Dun which is employed in the deduction of g at the other stations; but in view of the fact that the observations in the tent at Dehra Dun in November and May do not show any noteworthy change, it would be impossible without inconsistency to adopt such a course and 1 have therefore in this as in the case of all the other pendulums accepted a simple mean.

We have therefore the following :-

Table IV.—Times of Vibration at Dehra Dún to be used in deducing g.

\cdot	137	138	${ }^{139}$	140	Mean
Pendulum Room	$0^{s .5072590}$	$0^{s} \cdot 5075009$	$0^{s} \cdot 5071606$	0.5070859	$0^{*} 5072516$
Tent	0.5072580	0.5074992	0.5071602	0.5070840	0.5072504

Table V shews the times of vibration of each pendulum at the different stations and the difference between these times and those at Dehra Dun.

At the stations of Cuttack, Kesarbari, Ramchandpur, and Siliguri comparison has been made both with the values obtained in the pendulum room and with those in the tent; at Chatra and Kisnapur with the tent-values only, and at the remaining stations with the room-values only.

Table V. Times of Tibration and differences from Dehra Dín.

Date	137	138	339	140	Mean
1904 December 12.13 $"$ $13-14$ $"$ $14-15$ $"$ $16-17$	$\begin{array}{r} 8 \\ 0 \cdot 5073636 \\ 3618 \\ 3636 \\ 3637 \end{array}$	Cuttac plying lag $0 \cdot 50 ; 6045$ 6040 6054 60;8	$\begin{aligned} & 8 \\ & 0.50 \% 26_{54} \\ & 2649 \\ & 2661 \\ & 2659 \end{aligned}$	$\begin{array}{r} s \\ 0 \cdot 5071897 \\ 1867 \\ 1900 \\ 1894 \end{array}$	$\begin{array}{r} 0 \cdot 5073558 \\ 3544 \\ 3563 \\ 3562 \end{array}$
Means Delira Pendulum Room Difference	$\begin{array}{r} 0.5073632 \\ 0.5072590 \\ 1042 \end{array}$	0.5076049 0.5075009 1040	0.5072656 0.5071606 1050	0.5071890 - 5070859 1031	$0 \cdot 5073557$ 0.5072516 1041
Means Delira Tent Difference	$\begin{array}{r} 0.5073629 \\ 0.5072580 \\ 1049 \end{array}$	applying lag 0.5076046 0.5074992 1054	ction 0.5072653 0.5071602 1051	0.5071887 0.5070840 1047	$0 \cdot 5073554$ 0.5072504 1050
1904.05 Decomber $30-31$ "̈ 31-Jan. 1 January 	$\begin{array}{r} 0.5073047 \\ 3060 \\ 3053 \end{array}$	$\begin{array}{r} \text { Chatr } \\ 0.5075471 \\ 5494 \\ 547 \mathrm{I} \end{array}$	$\begin{array}{r} 0 \cdot 5072067 \\ 2083 \\ 2095 \end{array}$	8 0.5071306 1325 1317	$\begin{array}{r} 0.5072973 \\ 2991 \\ 2984 \end{array}$
Means Delura Tent Difference	$\begin{array}{r} 0.5073053 \\ 0.5072580 \\ 473 \end{array}$	0.5075479 0.5074992 487	0.5072082 0.5071602 480	$\begin{array}{r} 0.5071316 \\ 0.5070840 \\ 476 \end{array}$	$\begin{array}{r} 0.5072983 \\ 0.5072504 \\ 479 \end{array}$
1905 January 17.18 $"$ $18-19$ $"$ 19.20 $"$ 21.22 " 22.23	$\begin{array}{r} 0.5072859 \\ 2847 \\ 2855 \\ 2833 \\ 2870 \end{array}$	Kisnap $\begin{array}{r} 0.5075275 \\ 5271 \\ 5273 \\ 5357 \\ 5292 \end{array}$	$\begin{array}{r} 0.5071877 \\ 1867 \\ 1885 \\ 1856 \\ 1887 \end{array}$	$\begin{array}{r} 8 \\ 0.5071112 \\ 1113 \\ 1125 \\ 1103 \\ 1138 \end{array}$	$\begin{array}{r} 8 \\ 0.5072781 \\ 2775 \\ 2785 \\ 2762 \\ 2797 \end{array}$
Means Dehra Tent Difference	$\begin{array}{r} 0.5072853 \\ 0.5072580 \\ 273 \end{array}$	$\begin{array}{r} 0.5075274 \\ 0.5074992 \\ 282 \end{array}$	0.5071874 0.5071602 272	$\begin{array}{r} 0.5071118 \\ 0.5070840 \\ 278 \end{array}$	$\begin{array}{r} 0.5072780 \\ 0.5072504 \\ 276 \end{array}$
1905 January $31-\mathrm{Feb} .1$ February $1-2$ " $2-3$	$\begin{array}{r} 0 \cdot 5072963 \\ 2955 \\ 29.38 \end{array}$	$\begin{gathered} \text { Jalpaigı } \\ \varepsilon \\ 0.5075383 \\ 5.373 \\ 5.368 \end{gathered}$	$\begin{array}{r} 8 \\ 0.5071982 \\ 1969 \\ 1970 \end{array}$	$\begin{array}{r} 0.5071234 \\ 1221 \\ 1212 \end{array}$	$\begin{array}{r} 0.5072890 \\ 2880 \\ 2872 \end{array}$
Means Dehra Pendu lum Room Difference	$\begin{array}{r} 0.5072952 \\ 0.5072590 \\ 362 \end{array}$	$\begin{array}{r} 0.5075 .375 \\ 0.5075009 \\ 366 \end{array}$	$\begin{array}{r} 5.5071974 \\ 0.5071606 \\ 368 \end{array}$	$\begin{array}{r} 0.5071222 \\ 0.50710859 \\ 363 \end{array}$	$\begin{array}{r} 0.5072881 \\ 0.5072516 \\ 365 \end{array}$
$$	$\begin{array}{r} 8 \\ 0.5072834 \\ 2868 \\ 2887 \\ 2919 \end{array}$	Kesarb plying lag c $\begin{array}{r} 0.5075245 \\ 5277 \\ 5308 \\ 5332 \end{array}$	$\begin{aligned} & \text { ion } \\ & \quad \begin{array}{r} \\ 0.5071844 \\ 1887 \\ \\ 1889 \\ \\ \\ 19.32 \end{array} \end{aligned}$	$\begin{array}{r} 0.5071101 \\ 1127 \\ 1159 \\ 1183 \end{array}$	$\begin{array}{r} 0.5072756 \\ 2790 \\ 2811 \\ 284.1 \end{array}$
Means Dehira Pendulam Room Difference	$\begin{array}{r} 0.5072877 \\ 0.5072590 \\ 287 \end{array}$	- 5075291 0.5075009 282 applying lag	$\begin{array}{r} 0.5071888 \\ 0.5071606 \\ 282 \end{array}$	0.5071143 0.5070859 284	$\begin{array}{r} 0.5072799 \\ 0.5072516 \\ 283 \end{array}$
Means Deh. Tent Difference	$\begin{array}{r} 0.507287^{2} \\ 0.5072,80 \\ 39^{3} \end{array}$	$\begin{array}{r} 0.5075286 \\ 0.5074992 \\ 294 \\ \hline \end{array}$	$\begin{array}{r} 0.5071883 \\ 0.5071602 \\ 281 \end{array}$	$\begin{array}{r} 0.5071138 \\ 0.5070840 \\ 298 \end{array}$	$\begin{array}{r} 0.5072794 \\ 0.5072504 \\ 290 \end{array}$

Table \bar{V}. Times of Dibration and differences from Dehra Dún-(Continued).

Date	137	138	139	140	Mean
1905 Fobruary $26-26$ " "	$\begin{array}{r} 0 \cdot 5072846 \\ 2827 \\ 284^{6} \end{array}$	Ramchan pplying lag c 8 0.5075270 5234 5259	r. $\begin{aligned} & \text { ion } \\ & \qquad \quad \begin{array}{r} 0.5071874 \\ 1793 \\ 1869 \end{array} \end{aligned}$	$\begin{array}{r} 0.5071085 \\ 1084 \\ 1104 \end{array}$	$\begin{array}{r} 8.5072769 \\ 2734 \\ 2769 \end{array}$
Means Dehra Pendalam Room Difference	$\begin{array}{r} 0.5072840 \\ 0.5072590 \\ 250 \end{array}$	0.5075253 0.5075009 244	0.5071845 0.5071606 239	0.5071091 0.5070859 232	$0 \cdot 5072757$ 0.5072516 241
Means Dehra Tent Difference	$\begin{array}{r} 0.5072837 \\ 0.5072580 \\ 257 \end{array}$	applying lag 0.5075250 - 5074992 258	ction $\begin{array}{r} 0.5071842 \\ 0.5071602 \\ 240 \end{array}$	0.5071088 - 5070840 248	$\begin{array}{r} 0.5072754 \\ 0.5072504 \\ 250 \end{array}$
1905 March $12-13$ $"$ $13-14$ $"$ $14-15$ $"$ $15-16$	$\begin{array}{r} 0 \cdot 5073029 \\ 3042 \\ 3058 \\ 3027 \end{array}$	Siligu plying lag $\begin{array}{r} s \quad 5075458 \\ 5465 \\ 5473 \\ 5472 \end{array}$	$\begin{aligned} & \text { tion } \\ & \qquad \begin{array}{l} \text { s } \\ 0 \cdot 5072055 \\ 2058 \\ 2072 \\ 2041 \end{array} \end{aligned}$	$\begin{array}{r} 0 \cdot 5071311 \\ 1314 \\ 1320 \\ 1298 \end{array}$	$\begin{array}{r} 0.5072963 \\ 2970 \\ 2981 \\ 2960 \end{array}$
Means Dehra Pendulum Room Difference	$0 \cdot 5073039$ 0.5072590 449	$\begin{array}{r} 0.5075467 \\ 0.5075009 \\ 458 \end{array}$	$\begin{array}{r} 0.5072057 \\ 0.5071606 \\ 451 \end{array}$	$\begin{array}{r} 0.5071311 \\ 0.5070859 \\ 452 \end{array}$	$\begin{array}{r} 0.5072969 \\ 0.5072516 \\ 453 \end{array}$
Means Dehra Tent Difference	0.5073035 0.5072580 455	applying lag $0 \cdot 5075463$ 0.5074992 471	tion 0.5072052 0.5071602 45°	$\begin{array}{r} 0.5071307 \\ 0.5070840 \\ 467 \end{array}$	$\begin{array}{r} 0.5072964 \\ 0.5072504 \\ 460 \end{array}$
$\begin{array}{r} 1905 \\ \text { March } 20-21 \\ " \quad 21.22 \\ " \quad 22-23 \end{array}$	$\begin{array}{r} 8 \\ 0^{\circ} 5074049 \\ 4045 \\ 4045 \end{array}$	$\begin{aligned} & \text { Darjeel } \\ & \begin{array}{c} s \\ 0 \cdot 5076456 \\ 6462 \\ 6468 \end{array} \end{aligned}$	$\begin{array}{r} 5 \\ 0.5073074 \\ 3068 \\ 3066 \end{array}$	8 0.5072316 2310 2316	$\begin{array}{r} 0.5073974 \\ 3971 \\ 3974 \end{array}$
Means Dehra Pendulum Room Difference	$\begin{array}{r} 0.5074046 \\ 0.5072590 \\ 1456 \end{array}$	$\begin{array}{r} 0.5076+62 \\ 0.5075009 \\ 1453 \end{array}$	0.5073069 0.5071606 1463	0.5072314 0.5070859 1455	0.507.3973 0.5072516 1457
$$	$\begin{array}{r} 8 \\ 0 \cdot 5073715 \\ 3722 \\ 3725 \\ 3719 \end{array}$	Kurseo $\begin{array}{r} 8.5076111 \\ 6132 \\ 6147 \\ 6132 \end{array}$	$\begin{array}{r} 0^{\circ} 5072743 \\ 2741 \\ 2753 \\ 2738 \end{array}$	$\begin{array}{r} 8 \\ 0.5071997 \\ 1991 \\ 2007 \\ 1993 \end{array}$	$\begin{array}{r} 0 \cdot 5073641 \\ 3646 \\ 3658 \\ 3646 \end{array}$
Means Dehra Pendulum Room 1)ifference	0.5073720 0.5072590 1130	$\begin{array}{r} 0.5076131 \\ 0.5075009 \\ 1122 \end{array}$	0.5072744 0.5071606 1138	0.5071997 - 5030859 1138	$\begin{array}{r} 0.5073648 \\ 0.5072516 \\ 11.32 \\ \hline \end{array}$
$$	$\begin{array}{r} 8 \\ 0 \cdot 5074847 \\ 4849 \\ 4843 \end{array}$	$\begin{aligned} & \text { Sandaky } \\ & 8 \\ & 0.5077257 \\ & 7270 \\ & 7263 \end{aligned}$	$\begin{array}{r} 0 \cdot 5073^{877} \\ 3874 \\ 3^{876} \end{array}$	$\begin{array}{r} 8 \\ 0^{\circ} 5073123 \\ 3123 \\ 3129 \end{array}$	$\begin{array}{r} 0.5074776 \\ 4779 \\ 4778 \end{array}$
Means Dehra Pendulum Room Difference	$\begin{array}{r} 0.5074846 \\ 0.5072590 \\ 2256 \end{array}$	$\begin{array}{r} 0 \cdot 5077263 \\ 0.5075009 \\ 2254 \end{array}$	- $\cdot 507.3876$ 0.5071606 2270	0.5073125 - $\cdot 5070859$ 2266	$\begin{array}{r} 0.507478 \\ 0.5072516 \\ 2262 \end{array}$

The values of g derived from the differences in Table V are shewn in Table VI; g at Dehra Dún being taken to be $979 \cdot 063$.

Table VI. Deduced Values of g.

		137	138	139	140	Mean
Cuttack	(1)	$978 \cdot 661$ $\cdot 658$	$978 \cdot 661$ $\cdot 656$	$978 \cdot 658$.657	$978 \cdot 665$.659	$978 \cdot 661$ $\cdot 658$
Chatra	...	978.880	$978 \cdot 875$	978-878	978-879	978 $\mathbf{8 7}^{7}$
Kisnapur	...	978 9 98	978•954	978 ${ }^{\prime} 958$	978.956	978.956
Jalpaiguri	...	978•924	978.922	978.931	978•923	978•922
Kesarbari	(1)	$\begin{array}{r} 978 \cdot 952 \\ \cdot 951 \end{array}$	$\begin{array}{r} 978 \cdot 954 \\ \cdot 950 \end{array}$	$\begin{array}{r} 978 \cdot 954 \\ \cdot 955 \end{array}$	$978 \cdot 953$ $\cdot 948$	$\begin{array}{r} 978 \cdot 953 \\ \cdot 951 \end{array}$
Ramchandpur	(1) (2)	$\begin{array}{r} 978 \cdot 967 \\ \cdot 964 \end{array}$	$\begin{array}{r} 978 \cdot 969 \\ \cdot 963 \end{array}$	$\begin{array}{r} 978 \cdot 971 \\ \cdot 970 \end{array}$	$\begin{array}{r} 978 \cdot 973 \\ \cdot 967 \end{array}$	$\begin{array}{r} 978 \cdot 970 \\ \cdot 966 \end{array}$
Siliguri	(1)	$\begin{array}{r} 978 \cdot 890 \\ \cdot 887 \end{array}$	$\begin{array}{r} 978 \cdot 886 \\ \cdot 88 \text { I } \end{array}$	$\begin{array}{r} 978 \cdot 889 \\ \cdot 889 \end{array}$	$\begin{array}{r} 978 \cdot 888 \\ \cdot 883 \end{array}$	$\begin{array}{r} 978 \cdot 888 \\ \cdot 885 \end{array}$
Darjeoling	*.'	978.501	978•502	$978 \cdot 498$	978.501	978.501
Kursoong	\cdots	9:8.626	978.630	978.634	978-624	978•626
Sandatphu	-••	978•192	978'193	978 187	978•188	978.190

Reduction to Sea-level.

The computation of the orographical correction was carried out in the same way as before, but the regions surrounding the stations were not analysed so minuteiy.

The Nepal frontier lies but a short distance to the west of the hill stations visited this year, and as there are no trustworthy maps of that country a detailed examination would have been unprofitable.

The stations which came under consideration were Jalpaiguri, Siliguri, Kurseong, Darjceling and Sandakphu; I was in doubt as to whether a correction would be required at Jalpaiguri. The distance of this place from the foot hills is about 28 miles, that of Siliguri is about 8 miles; I decided to compute the corrections for the latter first and so obtain some idea of the magnitude of the attraction exercised by the hills on places not far from their foot.

In the tables that follow I have not thought it necessary to give so much detail as was done in the case of Mussooree.

Toble VII. Orographical corrections at Siliguri.
Height 387 feet.

r_{1} r_{2}	$\begin{aligned} & 7 \frac{1}{3} \text { miles } \\ & 10^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10 \text { miles } \\ & 12 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & 15 \quad " \end{aligned}$	$\begin{aligned} & 15 \text { miles } \\ & 20 \text { " } \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 \text { " } \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \text { miles } \\ & 35 \text { " } \end{aligned}$
Azimuth from \mathbf{N}	Δh	Δh	$\Delta \boldsymbol{h}$	Δh	Δh	Δh	Δh
$\begin{gathered} 0 \cdot 15 \\ 15 \cdot 30 \\ 30 \cdot 45 \\ 45 \cdot 60 \\ 60 \cdot 75 \\ 75 \cdot 90 \\ 90 \cdot 270 \\ 270 \cdot 285 \\ 285 \cdot 300 \\ 300 \cdot 315 \\ 315 \cdot 3.30 \\ 330 \cdot 345 \\ 345 \cdot 360 \end{gathered}$	feet 100 100 0 0 0 0 Southern 0 0 100 200 300 300	feet 1100 200 100 0 0 0 Compartme 0 100 200 600 1600 2100	feet 1600 400 200 100 0 0 nts all at the 0 300 1100 2600 2600 2600	feet 1600 2100 1600 300 100 \circ same level 400 1100 2600 2600 4600 2600	feet 1600 3600 1600 400 100 \circ as the sta 600 2600 3600 3600 5600 2600	tion 600 3600 2600 4600 3600 2100	feet 3600 3600 5600 1100 200 - 1600 3600 4600 6600 4600 3600
Effect ...	$0 \cdot 03$	0.68	$1 \cdot 26$	3.51	3.54	$2 \cdot 29$	$2 \cdot 73$

Total effect of zones within 35 miles radius $=14.04$

$$
\begin{aligned}
\text { Attraction } \ldots . \quad \ldots & =14.04 \times 0.000035 \\
& =0.00049
\end{aligned}
$$

From this result it may be inferred that at Jalpaiguri the effect of the hills up to a radius of 35 miles will be entirely negligible.

Not far beyond the 35 miles radius in the case of Siliguri, and of a 60 -mile radius in the case of Jalpaiguri, lie the giant mountains of the Kinchinjunga group, and beyond that again are the highlands of Tibet. We may take account of them by assuming that in the case of Siliguri one-third of the region outside the 35 -mile circle is occupied by a table-land 7000 feet high, and that the same is true of Jaipaiguri outside the 60 -mile radius. 7000 feet is undoubtedly too low for the Tibetan plateau, 12000 feet would be nearer the truth, but for the Himalayan region, where deep valleys alternate with high peaks, 7000 feet is probably a sufficient estimate even among the high ranges, and among the outer hills it is too great, so that on the whole, considering the greater proximity of the smaller ranges, this average height may be accepted.

The attraction of this outer region at Siliguri is found by formula (2) to be 0.0015 .
So that the total orographical correction is-

$$
\begin{aligned}
0.0015 & +0.0005 \\
& =0.0020 .
\end{aligned}
$$

At Jalpaiguri the attraction of the outer region is-

$$
0.0009
$$

Hence an orographical correction of 0.001 may be applied.

Table VIII. Orographical Correction at Kurseong.
Height 4913 feet.
Zones up to 3 miles.

No. of Zone	Inner Radius	Outer Radius	$\Delta \boldsymbol{h}$				Effect
	feet	feet					
1	50	100	-	5	10	20	0.5
2	100	200	20	20	40	45	2.8
3	200	400	30	40	75	90	$4 \cdot 8$
4	400	600	55	65	130	150	43
5	600	1000	90	100	210	240	9.5
6	1000	2000	93	230	363	577	29.8
7	2000	3000	155	370	547	743	19.8
8	3000	4000	177	420	690	1077	17.8
9	4000	5280	292	612	983	1448	25.5
10	5280	7920	333	890	1337	1852	$46 \cdot 3$
11	7920	10560	520	1237	1702	2243	$37 \cdot 3$
12	10560	13200	620	1573	2077	2660	$30 \cdot 3$
13	13200	15840	690	1690	2560	3060	29.8
						Sum	$258 \cdot 5$

Table IX. Orographical Correction at Kurseong.
Height 4913 feet.
Zones from 3 to 35 miles.

Total effect of zones within 35 miles radius $=481 \cdot 2$
Attraction $=481.2 \times 0.000035$

$$
=0.0168
$$

For the country lying outside the 35 -mile radius we may, at Kurseong, make the same assumption as was made for Mussooree, namely, that the southern half is at sea-level and that the northern half consists of an elevated plain. In the case of Mussooree I assumed this plain to be at the same height as the station, here I shall assume it to be 2,000 feet higher than the station. Thus to complete the orographical correction we require the effect of half the infinite plain outside the 35 -mile radius + the effect of a half zone 2,000 feet thick of which the inner radius is $\mathbf{3 5}$ miles and the outer infinite.

$$
\begin{aligned}
& \text { Attraction of infinite plain }=0.1720 \\
& \text {, }, \text { plain of } 35 \text {-mile radius } \\
& =0 \cdot 1696 \\
& \text { Difference } \quad=0.0024 \\
& \text { Half difference } \quad=0.0012 \\
& \text { Attraction of half zone } 2000 \text { feet thick } \quad=0.00019 \\
& \text { Quantity required to complete orographical correction }=0.0014 \\
& \text { Total orographical correction }=0.0168+0.0014 \\
& =0.0182
\end{aligned}
$$

Table X. Orographical Correction at Darjeeling. Height 6966 feet.
(Zones up to 6 miles).

No. of Zone	Inner Radius	Outer Radius	$\Delta \hbar$				Effect
	feet	feet	feet	feet	feet	feet.	
1	100	200	10	23	34	49	$2 \cdot 5$
2	200	300	21	41	53	76	$2 \cdot 0$
3	300	500	23	60	92	131	$4 \cdot 5$
4	500	700	$3{ }^{1}$	77	14 I	211	$5 \cdot 0$
5	700	1000	44	71	133	248	$4 \cdot 5$
6	1000	1300	49	124	220	343	$5 \cdot 0$
7	1300	1600	86	239	343	484	7.0
8	1600	2040	112	337	470	650	12.3
9	2040	2640	164	499	664	851	18.5
10	2640	3300	194	621	966	1241	24.5
11	3300	3960	324	749	1141	1499	$24 \cdot 8$
12	3960	5280	327	974	1333	1549	$38 \cdot 3$
13	5280	6600	394	1166	1574	2016	$36 \cdot 0$
14	6600	7920	416	- 1266	1833	2466	33.3
15	7920	10560	849	1649	2149	2849	$60 \cdot 5$
16	10560	13200	877	1916	2533	3233	$48 \cdot 0$
17	13200	15840	322	1683	2833	3599	$36 \cdot 8$
18	15840	21120	528	1599	3566	4316	$65 \cdot 3$
19	21120	26400	650	1749	3749	4999	40.0
20	26400	31680	922	2183	3533	5516	$37 \cdot 3$
						m	$515 \cdot 1$

Table XI; Orographical Correction at Darjeeling.
Height 6966 feet.
(Zones from 6 to 35 miles).

No. of Zone	21	22	23	24	25	26	27	28
$\begin{aligned} & r_{1} \\ & r_{3} \end{aligned}$	$\begin{aligned} & 6 \text { miles } \\ & 7 \frac{1}{2} " \end{aligned}$	$\begin{aligned} & 7 \frac{1}{2} \text { miles } \\ & 10 ״ \end{aligned}$	$\begin{aligned} & 10 \text { miles } \\ & 12 \frac{1}{3}, " \end{aligned}$	$\begin{aligned} & 12 \frac{1}{2} \text { miles } \\ & 15 \mathrm{"} \end{aligned}$	$\begin{aligned} & 15 \text { miles } \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 " \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 30 \quad " \end{aligned}$	$\begin{aligned} & 30 \text { miles } \\ & 35 ״ \end{aligned}$
	Δh	Δh	$\Delta \hbar$	Δh				
	foet 5000 4500 4500 5500 5200 2500 2700 4100 3500 1700 800 1000 1900 3300 3200 1;00 900 2700 2500 2700 2700 3800 4500 4000	feet 2500 1800 2500 5000 5500 5000 5500 5500 4500 3000 1500 2500 3500 3000 2000 1000 1000 2000 800 1000 2000 2500 1800 1500	feet 1500 1500 1000 3000 4500 5500 5000 6000 5000 3500 4000 2000 3500 3000 3000 2000 2000 1500 1500 1000 2000 1800 . 1000 1000	feet 2000 700 700 2500 5000 4000 5800 5500 5800 4000 5000 4500 4500 4000 4000 3000 2000 1500 1500 1500 1000 1500 1000 500	$f e e t$ 2000 500 2000 3500 5000 3000 3500 4000 6000 6300 6500 6300 5500 5500 5000 3000 3000 1000 2000 2500 2500 2000 2000 800	feet 1500 1200 1500 1000 3000 2000 4500 5500 6500 6600 6600 6600 6600 6200 5500 4000 3000 1000 1000 1000 2000 2500 2000 1000	foet 2000 2000 1000 500 2500 3000 4500 6300 6600 6700 6700 6700 6700 6700 6600 5500 4500 1000 1000 1000 1000 2000 4000 4000	feet 6000 5000 1000 2000 1500 1500 5000 6400 6700 6700 6700 6700 6700 6700 6500 6000 5000 2000 3000 1000 1000 4000 5000 6000
Effect	$36 \cdot 1$	$32 \cdot 6$	$18 \cdot 6$	14.7	$24 \cdot 8$	$15 \% 7$	13.4	9'5

Total effect of zones within 35 -mile radius $=680.5$
Attraction $\quad=680.5 \times 0.000035=0.0238$

At Darjeeling the assumption that was made for Mussooree and Kurseong, is not applicable; for this station lies further in among the hills. But the effect of the zones beyond the 35mile radius may be estimated in another way. As we extend the radii, the character of the compartments of which the zones are composed will not change much; the southern halves of the zones will lie almost wholly in the plains, the northern compartments among the higher ranges and the eastern and western among the outer hills, thus there will be no great change in the effect of the zones because of changes in the heights of their compartments, and there will be a continual decrease owing to the increasing distance from the station. This decrease is proportional to the decrease in the difference between the reciprocals of the radii. If we make this difference constant and equal to its value for the $30-35-$ mile zone, we find the following radii $42,53,70,105,210,100000$, we may therefore take it that the masses which lie beyond the 35mile radius will have an effect equivalent to six times that of the $30-35$-mile zone. The effect of this zone was $9 \cdot 5$, so that $57 \cdot 0$ is to be added for the outer regions. The addition to the orographical correction is therefore

$$
\text { and the total correction is } \begin{aligned}
57.0 \times 0.000035 & =0.0020 \\
0.0238 & +0.0020 \\
& =0.0258
\end{aligned}
$$

Table XII. Orographical Correction at Sandakphw.
 Height 11766 feet.

(Zones up to 4 miles).

No. of Zone	Inner Radius	Outer Kadius	$\Delta \boldsymbol{\lambda}$				Effect
	feet	feet	feet	feet	feet	feet	
1	200	300	6	9	27	54	0.8
2	300	400	9	14	34	52	0.4
3	400	500	13	18	24	67	$0 \cdot 3$
4	500	1000	55	149	233	433	27.0
5	1000	1500	233	333	583	866	$41 \cdot 8$
6	1500	2000	283	549	899	1166	42.5
7	2000	2640	416	633	983	1433	45.5
8	2640	3300	483	791	1091	1624	$38 \cdot 5$
9	3300	3960	508	941	1358	1799	35° -
10	3960	5280	716	1208	1733	22.6	69.5
11	5280	7920	816	1716	2133	2866	116.8
12	7920	10560	1049	2016	2533	3466	86.5
13	10560	15840	1499	2566	3166	3933	128.5
14	15840	21120	2199	3033	3466	4166	83.3
						Sum	716.4

Table XIII. Orographical Correction at Sandakphu.
Height 11766 feet.
(Zones from 4 to 35 miles).

No. of Zone	15	16	17	18	19	20	21	22	23	24
r_{1} r_{8}	$\begin{aligned} & 4 \text { miles } \\ & 5 ", \end{aligned}$	$\left\|\begin{array}{c} 5 \text { miles } \\ 6 \quad " \end{array}\right\|$	6 miles 7	$\begin{array}{\|l} 7 \frac{3}{2} \text { miles } \\ 10 \mathrm{"} \end{array}$	$\left\|\begin{array}{c} 10 \text { miles } \\ 12 \mathrm{~m} \end{array}\right\|$	$\begin{aligned} & 12 \text { miles } \\ & 16 \text { ״, } \end{aligned}$	$\left\lvert\, \begin{aligned} & 16 \text { miles } \\ & 20 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 20 \text { miles } \\ & 25 \end{aligned}\right.$	$\left\|\begin{array}{c} 25 \text { miles } \\ 30 \ldots \end{array}\right\|$	$\begin{aligned} & 30 \text { miles } \\ & 35 \text { ", } \end{aligned}$
N	Δh	Δh	Δh	Δh	$\Delta \boldsymbol{h}$	Δh	Δh	$\Delta \pi$	Δh	Δh
	feet									
	1000	1300	1000	800	1800	2800	1800	1200	3200	5200
	600	1400	2000	2800	3800	3800	2800	1800	700	2200
	2100	2100	3000	2300	4800	3800	5800	4800	2800	2200
	3100	3700	4800	2800	3800	4800	5800	6800	4800	1800
	5000	5400	5800	4800	5800	8800	7800	6800	5800	6800
E	3200	4400	6000	6800	;800	8800	8800	8800	7800	8800
	4000	5600	6300	6300	6800	7800	6800	9300	9800	9800
	5200	6000	4600	5300	7800	5800	5800	5800	8800	10300
	4800	3900	3100	5100	6800	5800	7800	6800	9300	11100
	3700	3300	2400	4300	5800	5800	7800	8800	10800	11400
	2900	2800	3800	4800	6800	6800	8800	10800	11200	11500
8	4300	3800	4300	5800	7800	7800	9800	10600	11500	11500
			5800	6800	8800	8800	9800	10.300	11400	11500
	No map available for the western halves of these zones. It has been assumed that they are the same as the eastern halves.		6800	5800	8800	9800	9800	10800	10800	10800
			5800	6800	8800	8800	9300	9800	10.300	10800
			5800	6800	7800	6800	8800	7800	7800	8800
			6800	4800	6800	5800	7800	6800	7800	7800
W			4800	3800	6800	6800	7800	8800	8800	9800
			5800	5800	6800	7800	8800	8800	7800	5800
			4800	4800	5800	7800	8800	7800	7800	4800
			5800	5800	5800	5800	7800	6800	7800	6800
			5800	5800	5800	4800	7800	6800	5800	3800
			4800	4800	3800	5800	5800	5800	2800	6800
N			2800	2800	3800	6800	5800	6800	4800	5800
Effect	$62 \cdot 1$	48.4	76.4	83.8	67.5	$88 \cdot 3$	72.5	58.6	43.4	26.5

Total effect of zones within 35 -mile radius $=1343 \cdot 9$
Attraction $=1343.9 \times 0.000035=0.0470$

At Sandakphu the outer zones may be treated in the same way as at Darjeeling.
The effect of the $30-35$-mile zone was $26 \cdot 5$, hence that of the remainder may be estimated at $26.5 \times 6=159 \cdot 0$, and the addition to the orographical correction is

$$
\begin{aligned}
159.0 \times 0.000035 & =0.0056 \\
\text { The total correction therefore }=0.0470 & +.0056 \\
& =0.0526
\end{aligned}
$$

The results of the season's work are summarised in Table XIV. In the case of stations at which the times of vibration are given in Table V both with and without a lag correction, the mean of the two values at Dehra Dún, that is to say in the room and in the tent respectively, and the mean of the differences, have been used in computing g. The formula employed was

$$
g=g_{0}-2 g_{0} \frac{s-s_{0}}{s_{0}}+3 g_{0}\left(\frac{s-s_{0}}{s_{0}}\right)^{8}
$$

where the letters with the subscript ' 0 ' refer to Dehra Dún.
The third term of the formula has not been used except in the case of Sandakphu.
When $s-s_{0}=2090 \times 10^{-7}$, the value of this term $=0.0005$.
For g_{0} the same value as before, namely $979 \cdot 063$ has been adopted.
Table XIV. Abstract of final Results.

Station		Latitude	Height	Observed g	$g \frac{2 h}{R}$	$g \frac{3}{4} \frac{h}{R}$	0	Value at sea level $90^{\prime \prime}$	γ_{0}	$g_{0}{ }^{\prime \prime}-\gamma_{0}$
Cuttack	...	$20 \quad 29$	feet 92	978.659	+0.009	-0.003	$0 \cdot 000$	$978 \cdot 665$	978.636	+0.029
Chatra	...	$24 \quad 13$	64	978•878	+0.006	-0.002	$0 \cdot 000$	978-882	978•873	+0.009
Kisnapur	\cdots	$25 \quad 2$	113	978•956	+0.011	-0.004	0.000	978-963	978•930	+0.033
Ramchandpur	\cdots	2541	132	978•968	+0.013	-0.005	$0 \cdot 000$	978-976	978•975	+0.00x
Kesarbari	...	$26 \quad 8$	204	978.952	+0.019	-0.007	0.000	978.964	979*007	-0.043
Jalpaiguri	\cdots	26 31	268	978-922	+0.025	-0.009	+0.001	978•939	979*035	-0.096
Siliguri	\cdots	$26 \quad 42$	387	978-887	+0.036	-0.014	+0.002	978.911	979.048	-0.137
Kurseong	...	$26 \quad 53$	4913	978•626	+0.460	-0.172	+0.018	978•932	979-062	-0.130
Darjeeling	\cdots	27	6966	978.501	+0.646	-0. 242	+0.026	978•931	979*074	-0.143
Sandakphu	\cdots	$27 \quad 6$	11766	978•190	+1•096	-0.411	+0.053	978-928	979*078	-0.150

Professor Dr. Hecker has been so kind as to furnish me with the full details of his observations at Jalpaiguri, but as they will appear in the publications of the Prussian Geodetic Institute it will be sufficient for me to give a summary of them here. He was equipped with a set of six pendulums namely Nos. 5, 6, 7, 8, 16 and 21, but No. 6 has not been utilised in the determination of g^{*}.

The times of vibration of the 5 pendulums at Potsdam before and after his journey were:-

Pendulum	5	7	8	16 .	21	Mean
Before ... After	$\begin{aligned} & 0.5083411 \\ & 0.5083413 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5083150 \\ & 0.5083138 \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{8} .5083166 \\ & 0^{\circ} 508314.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5076739 \\ & 0.5076740 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5097473 \\ & 0.5097472 \end{aligned}$	$\begin{aligned} & 0.508+788 \\ & 0.508_{47} 8 \mathrm{I} \\ & \hline \end{aligned}$
Mean ...	$0 \cdot 508.3412$	$0 \cdot 508.3144$	$0 \cdot 5083155$	$0 \cdot 5076740$	$0 \cdot 5097473$	0.5084785

At Jalpaiguri Dr. Hecker observed each pendulum six times obtaining the following values:-

Pendulum	5	7	8	16	21 ;	Mean
	$\begin{gathered} 8 \\ 0^{\circ} 5089497 \end{gathered}$	$0^{\circ} 5089250$	$0^{\circ} \mathrm{F} 5089278$	$0 \cdot 8082828$	0^{8}	0.8090890
	519	241	264	830	613	93
	494	244	242	820	587	77
	501	240	246	821	590	80
	512	229	239	827	596	8!
	504	. 233	244	826	591	80
Mean ...	0.5089505	0.5089240	0.5089252	0.5082825	0.5103596	0.5090884
Difference from Potsdam	6093	6096	6097	6085	6123	6099

The resulting values of g at Jalpaiguri are :-

Pendulum	6	7	8	16	21
g	978.926	978.925	978.924	978.926	978.921
Mean 978.924					

My value (vide table XIV) is $978 \cdot 922$ and the agreement between the two results is extremely satisfactory.

My value of g at Jalpaiguri is obtained by three steps namely :-

$$
g \text { at Potsdam } \quad \ldots \quad=981 \cdot 274
$$

1. g at Kew less than g at Potsdam by 0.074

$$
(\text { Mr. Putnam's determination in 1900) }=981 \cdot 200
$$

* I am not aware of the reason for omitting the result by No. 6.

2. g at Dehra Dún less than g at Kew by $2 \cdot 137$

$$
\text { (observations of } 1903-04 \text {) }=979.063
$$

3. g at Jalpaiguri less than g at Dehra by 0.141
(observations of 1904-05) $=978.922$
The agreement therefore of Dr. Hecker's result with mine makes it probable that there is no error of importance in any of the above steps. This is the more satisfactory as the Dehra Dún observations of $1904-05$ were not by auy means as accordant as could be wished.

It is still desirable that the connection between Kew and Dehra be strengthened when an opportunity occurs, but in the mean time we may feel tolerably confident that the value $979 \cdot 063$ which has been adopted for Dehra Dún is not far from the truth.

CHAPTER IV.

The Observations in 1905-06.

For the scene of the operations in 1905-06 Colonel Burrard selected a line running, roughly speaking, from Simla to Quetta. The objects in view were :-
(1) To ascertain whether the marked deficiencies in the force of gravity, which had been observed in the outer Himalayan Range, and in the submontane tracts, both on the meridian of Dehra Dún and on that of Darjeeling, would again be found in the neighbourhood of Simla.
(2) To see whether the pendulums wonld throw light on the deflections of the Plumbline indicated by the Amritsar-Multán arc of longitude. On this arc one would have expected to find the Plumb-lines at both ends deflected outwards, towards the Himalayas and the Suleman mountains respectively, but it was found on the contrary that they were deflected inwards.
(3) To make a first step towards the examination of the Baluchistan mountains.
(4) To make a set of observations at Captain Basevi's station at Mián Mir. This was the last station at which Basevi observed before starting on his journey to Moré, and at it the pendulums were swung on a stand which had been specially constructed for that difficult expedition. It has been thought that this stand may have been less rigid than the ordinary one, and that therefore the observations at Mián Mir and Moré may require a specially large correction for flexure.

The observations of the previous season had shewn that the variations of temperature in a tent are too large; it was decided therefore to visit during this season only places in which suitable houses were available. Through the kind assistance of the officers of the P. W. Department, of the Indian Civil Service and the Military Works Service, good observing rooms were obtained at all the stations visited.

The equipment was the same as before except that the Transit Instrument No. 1 was used instead of No. 2. No. 1 had been fitted with a glass diaphragm with lines ruled upon it instead of the spider webs hitherto employed. There had been a good deal of trouble with the webs owing to their breaking or becoming loose, and I therefore determined to try lines on glass. The diaphragm was made and fitted by Messrs. Troughton and Simms. It is certainly very much more convenient than the webs and I donot think that there has been any falling off in the accuracy of the intersections.

An improvement was introduced this year in the method of observing the star-transits. Hitherto it has been the custom to divide the programme of stars into two parts and to observe the one in the position I. P. E.* and the other in the position I. P. W. This year the plan was adopted of reversing the telescope in the middle of the observation of each star, this cancels collimation error, error due to inequality of pivots and error due to imperfect knowledge of the

[^13]wire-intervals. Furthermore the reduction of the observations is much abbreviated, for the process of reducing to the centre wire is got rid of, without losing the check on the accuracy of the intersections afforded by a comparison of the times of transit over each wire.

Throughout the season the time observations were undertaken by Babu Hanuman Prasad.
The same set of thermometers was used this year as last. During the summer three of them, namely Nos. 105368 and 105369 by Negretti and Zambra and No. 516 by Fuess had been sent to the National Physical Laboratory for a redetermination of their errors. The results agreed well with those of the determination made in Nov. 1903.

A dummy pendulum, with a hollow stem for the reception of a thermometer, was also made for me during the summer by the Mathematical Instrument Department.

A dummy pendulum for the thermometers intended to give the temperature of the true pendulum was included in the equipment used by Captain Basevi*, and so far as I am aware, one has always formed part of the Von Sterneck apparatus. A device of this kind is specially necessary when the temperature is unsteady, and I regretted that I was not equipped with one when observing in the tent. Dr. Hecker had one with him and the one made for me is a copy of his.

I took the dummy pendulum into use at Dehra Dún at the beginning of the field season, and the results it gave seemed quite satisfactory, but after that I found that whether the temperature of the air was rising or falling the reading of the thermometer in the dummy was always considerably below that of the other thermometers; the reason I at last found to be that there was too much connection between the dummy and the masonry pillar. The latter at all the stations except Dehra Dún had been but recently built, and was damp and colder than the surrounding air, and the dummy was constantly parting with its heat to the stoue cap through the little tripod on which it stood. I could not alter the state of things during the tour and I therefore used the readings of the two thermometers attached to the stand for the reduction of the observations, as on former occasions.

The masonry pillar for the pendulum stand was of the same pattern and dimensions as before.
The temperature conditions were fairly satisfactory at all the stations visited, and as there was but little difference between them and those that obtained at Dehra Dún, no lag corrections have been applied. The rate of change of the temperature is shewn in the table giving the details of the observations, whence it may be seen that the corrections if computed would have been of nearly equal magnitude throughout, and therefore without effect on the differences from Dehra Dún.

The latitudes and longitudes have all been taken off the 1 -inch or 2-inch map, whichever was available, except in one or two cases which are mentioned in the descriptions of the stations. The way in which the height of each station was derived is also mentioned in the description.

The longitudes have all received the correction necessary to reduce them to the most recent terms, namely those in which the longitude of Madras has the value $80^{\circ} 14^{\prime} 54^{\prime \prime}$.

[^14]
THE STATIONS.

	Dehra Dun.			
Latitude	\cdots...	30	19	2
Longitude	...	78	3	2
Height abo	ean sea level		2241	

The observations were made in the new pendulum room. None were taken in the tent.
The flexure correction was observed four times :-

The pendulum station was situated in one of the rooms on the N . W. side of the civil secretariat (Gorton Castle). The height was determined by levelling from the P. W. D. h. s. of the Simla triangulation.

The floor of the room was good and an isolated foundation for the pendulum pedestal was not provided.

The temperature conditions were good. The observations were much delayed by cloudy weather ; the apparatus was ready on the 12th December but no stars were obtained till the 15th.

The flexure correction was determined five times, but only the last three observations have been used as the other two were made on the 12th.

The results were:-

The pendulum station was situated in the last room but one from the east end of the long single-storied building known as Lowrie's hotel.

To ascertain the height a line of levels was run from rail-level at the railway station to the floor of the room, showing that the latter is 55 feet higher than the former. Rail-level at

Kálka is 1251 feet above rail-level at Ambala, and rail-level at Ambala was found, hy running a line to the G. T. bench-mark on the steps of the church, to be 896 feet above mean sea level.

Only one set of observations was made at this station.
The flexure correction was determined four times:-

The pendulum station was situated in the western room of the ground floor of the two storied block of officers' quarters in Ludhiana fort. The room has thick walls and a vaulted roof, and the temperature conditions were good. Isolated platforms were built for the pendulum pedestal and for the clock.

The height was determined by running a line of levels from the centre of the metalling at the junction of the Ambala and Ferozepore roads. It was assumed that this point was 2 feet higher than the imbedded bench-mark of the G. T. levels mentioned on p. 107 of the pamphlet of 1863. This bench-mark could not be found.

The flexure correction was determined five times :-

30th December	5th January
$43^{8} 5 \times 10^{-7}$	43.6×10^{-7}
43.8	40.7
	41.4

Adopted Correction $\quad-43^{8} \times 10^{-7}$
At this station the method of reversing the transit instrument in the middle of the observation of each star, was used for the first time.

Mian Mir.

	Mian	Mir.	.	,	".
Latitude	\ldots	\ldots	31	81	37
Longitude	\ldots.	74	22	32	
Height above mean sea level	...		708	feet.	

The pendulum station was situated in the southernmost of the three principal rooms of a small bungalow which stands immediately behind (i.e. to the west 0f) Messrs. Jamsetjee's shop, and a little to the east of north of the racket court.

This is probably not the same house as that in which Captain Basevi observed in 1871. Enquiries from old residents shewed that there had been a small house about 100 yards further west, which had been pulled down some time ago, it seems probable that it was there that the old pendulum observations were made.

The height was determined by a line of levels from a G. T. bench-mark on the steps of the church.

The longitude given by Captain Basevi for his station is $74^{\circ} 25^{\prime} 40^{\prime \prime}$, that which I found for my station by a traverse to the church, the co-ordinates of the steeple of which are given in Synoptical Volume IV of the G. T. Survey, was $74^{\circ} 24^{\prime} 59^{\prime \prime}$ (in the old terms). Taking into consideration the distance of about 100 yards that separated the two stations and the fact that Captain Basevi's was to the west of mine, the longitude of the old pendulum station, as deduced from that of mine, must have been $74^{\circ} 24^{\prime} 56^{\prime \prime}$ approximately. I am unable to explain the difference of $44^{\prime \prime}$ between Captain Basevi's value and that now deduced. It would appear that his value is not in terms of the datum of the G. T. Survey, viz., Warren's value for the Longitude of Madras, $80^{\circ} 17^{\prime} 21^{\prime \prime}$. It is not, however, to be supposed that this discrepancy indicates a doubt as to the identification of Basevi's station. It was ascertained with complete certainty that his station was situated somewhere within a certain acre of ground.

The floor of the room was not good and isolated platforms were built both for the pendulums and for the clock.

The flexure correction was determined five times:-

9 th January	13 th January
$40 \cdot 3 \times 10^{-7}$	$36 \cdot 1 \times 10^{-7}$
$42 \cdot 3$	$37 \cdot 6$
$39 \cdot 1$	\cdots
	-39×10^{-7}

Ferozepore.

			\bullet	\prime	$\prime \prime$
Latitude	\ldots	\ldots	30	55	$\mathbf{4 8}$
Longitude	\ldots	\ldots	$\mathbf{7 4}$	37	$\mathbf{4}$
Height above mean sea level	\ldots		647	feet.	

The pendulum station was situated in the eastern room of the P. W. D. Rest-house, the latter stands about 570 yards east of the junction of the main road to Lahore with the Ferozepore Mall.

The height was determined by a line of levels run from a bench-mark of the G. T. Survey on the lst mile-stone on the Lahore road.

The floor of the room was good and isolated platforms were not provided.
The flexure correction was determined six times:-

| 17 th January | | 19 th January |
| :---: | :--- | :--- |\quad 21st January

For the first two sets of observations the value $-50^{8} \times 10^{-7}$ was adopted and for the last set the value $-48^{\circ} \times 10^{-1}$.

Pathankot.

			0	$\prime \prime$	
Latitude	\ldots	\ldots	32	16	33
Longitude	\ldots	\ldots	75	39	3
Height above mean sea level $\ldots .$.		1088	feet		

The pendulum station was situated in the room at the east side of the District Rest-house. This room is about 710 feet north, and 565 feet east of the centre of the platform of the railway station.

A line of levels was run from the railway to the pendulum room showing that the latter is 4.6 feet above rail-level. The height of the rails given by the railway authorities was 1083.7 feet.

The flexure correction was determined four times :-

Montgomery.

		-	,	*
Latitude	...	30	39	47
Longitude	...	73	6	18
Height above mean sea level				

The pendulum station was in the Municipal Building, it was about 530 feet south and 2900 feet east of the monument to L. O. Fitzhardinge Berkeley which stands immediately in front of the cutcherry.

The height of the floor of the room was determined by levelling from the railway station.
The flexure correction was determined seven times :-

11th February $\begin{aligned} & 41 \cdot 8 \times 10^{-7} \\ & 41 \cdot 8 \end{aligned}$	14th February $40^{\circ} \cdot 0 \times 10^{-7}$ $41 \cdot 4$	16th February $40^{8} \cdot 9 \times 10^{-7}$	20th February $\begin{aligned} & 39.6 \times 10^{-7} \\ & 40.3 \end{aligned}$
Adopted Correction	-41^{8}		

Dera Ghazi Khan.

			0	\prime	\prime
Latitude	\ldots	\ldots	30	3	49
Longitude	\ldots	\ldots	70	45	38
Height above mean sea level	\ldots.		397	feet	

The pendulum station was situated in a house on the eastern side of the road which runs nearly north and south and passes between the Church and the Cutcherry. The pillar was about 1400 feet south and 430 feet west of the centre of the Church.

There had been an imbedded bench-mark of the principal levelling close to the gate of the Treasury, but it could not be found; so it was assumed that it had been 1 foot below ground level, and a line of levels was run from its probable position to the pendulum room.

The flexure correction was determined four times, and showed that a large change in the rigidity of the pillar took place while the observations were in progress, this was due to the cement being still wet when the observations began, and becoming harder gradually.

The results of the observations were :-

27th February	2nd March
$66^{5} 4 \times 10^{-7}$	$55^{8} 6 \times 10^{-7}$
$65 \cdot 0$	$56 \cdot 8$

The adopted corrections were :-

February	27	Night	$-5 \stackrel{8}{9} \times 10^{-7}$
"	28	Day	58×10^{-7}
	28	Night	
March	1	Day	-57×10^{-7}
",	1	$\underset{\text { Day }}{\text { Night }}$	-57×10^{-7}

These values were obtained by drawing a curve of the same form as that found at Jalpaiguri in 1905, where the circumstances were similar.

Multan.

			•	,	$\prime \prime$
Latitude	\ldots	\ldots	30	11	11
Longitude	\ldots	\ldots	71	25	51
Height above mean sea level			404	feet	

The pendulum station was in a room at the northern corner of a house which stands in the S. E. angle formed by Lake Street and Prince's Road.

The height was determined by levelling from the bench-mark in the compound of the Canal office.

The flexure correction was determined five times:-

7th March	10th March	11th March
$45^{*} 1 \times 10-7$		${ }^{2} 4.5 \times 10^{-7}$
45.1×10^{-7}	45.3×10^{-7}	44.5×10^{-7}
41.3	\ldots	$45 \cdot 5$
rection	$-\stackrel{8}{4}^{8} \times 10^{-7}$	

Adopted Correction
 $$
-\stackrel{8}{4}_{4} \times 10^{-7}
$$

This station was very near the road and I do not think that the ground was wholly free from tremors caused by passing traffic. I did not succeed in definitely detecting their effects but I think that the less good agreement between the results of the several sets of observations may probably be ascribed to them.

Jacobabad.

			\circ	$\prime \prime$	$\prime \prime$
Latitude	\ldots	\ldots	28	16	34
Longitude	\ldots	\cdots	68	27	5
Height above mean sea level				183	feet

The pendulum station was situated in the large western room of the Military Works Resthouse. The pillar was about 5800 feet east and 106 feet north of the centre of the railway station. The height was determined by two separate lines of levels, the one to the nearest canal bench-mark and the other to the rails opposite the station platform.

The results differed by 1 foot only.
The flexure correction was determined five times:-

The pendulum station was in the centre room of the Dâk Bungalow.
The pillar was about 390 feet south and 980 feet east of the centre of the platform of the railway station.

The height was determined by levelling from the railway lines opposite the station.
The flexure correction was determined six times:-

21st March	26th March	27 th March
s.		
$49 \cdot 4 \times 10^{-7}$	$45^{\circ} 6 \times 10^{-7}$	$46^{8} \cdot 9 \times 10^{-7}$
49.0	$44 \cdot 0$	46.4
rection	-48×10^{-7}	

Bad weather was met with at this station and stars were obtained on the nights of the 21 st, 23rd and 26 th only. 'Therefore, although 5 sets of observations were made, only 2 independent results can be deduced from them.

Mach.

			0	$\prime \prime$	$\prime \prime$
Latitude	\ldots	\cdots	29	52	25
Longitude	\ldots	\cdots	67	18	20
Height above mean sea level	\cdots		3522	feet	

The pendulum station was situated in the centre room of building No. 36, which stands between the Military Works Inspection House and the Rest-house or Dâk Bungalow, and about

50 yards from the former. The approximate distance and azimuth of the centre of the iron railway bridge on the opposite side of the Bolan River were 2300 feet and 276°.

The height was determined by levelling from the Sibi abutment of the above-mentioned bridge. The height of that point as determined by the railway engineers is 3430.7 feet above mean sea level and the floor of the pendulum room was found to be $91 \cdot 3$ feet above it.

The flexure correction was determined four times :-

The pendulum station was situated in the small bungalow in the compound of the C.R.E.'s house, which used formerly to be the Superintending Engineer's office. The C.R.E.'s house stands in the eastern angle formed by the intersection of Phayre Road with Lytton Road. The pendulum pillar was about 126 yards from Phayre Road and 31 yards from Lytton Road. A plane table traverse was made connecting the pendulum station with the Telegraph Office S. at which a latitude and an azimuth had been observed in 1904, and the co-ordinates of which are given in Vol. XV. Op. G. T. S. Appendix p. (12).

The height was determined by levelling from the railway station. Rail-level at the station as determined by the railway engineers, is $5501 \cdot 6$ feet.

The flexure correction was determined five times :-

On returning to Dehra Dún the closing observations were made in the pendulum room.
The flexure observation was made four times and yielded the following values :-

$\begin{gathered} \text { 20th April } \\ 88^{8} \times 10^{-7} \\ 40 \cdot 7 \end{gathered}$		26th April
		$36^{6} 7 \times 10^{-7}$
		37.5
On .	- 39×10^{87}	

Mian Mir.
10-1 January, 1906.

	h	m	8
1.37	5	22	$34 \cdot 617$
139	6	17	$35 \cdot 061$
138	7	11	$33 \cdot 522$
140	8	0	$35 \cdot 420$
137	17	18	$34 \cdot 590$
139	18	10	$35 \cdot 047$
138	19	4	$43 \cdot 506$
140	29	58	$35 \cdot 404$

Table I. Details of the Observations-(Continued).

time of vibration at dehra dun.

In Table II the times of vibration of each pendulum in November and April respectively are collected.

Table II.-Times of Vibration at Dehra Dún.

Date	137	138	139	140	Mean
$\begin{array}{cc} \text { Nov. } & 12-13 \\ " & 13-14 \\ " & 14-15 \end{array}$	$\begin{array}{r} \& \\ \circ \cdot 5072577 \\ 2577 \\ 2596 \end{array}$	November $\begin{array}{r} 0.5074989 \\ 4981 \\ 5001 \end{array}$	905. $\begin{array}{r} 8 \\ 0.5071600 \\ 1590 \\ 1603 \end{array}$	$\begin{array}{r} 8 \\ \circ \cdot 50708,6 \\ 0849 \\ 0857 \end{array}$	$\begin{array}{r} 0.5072505 \\ 2499 \\ 2514 \end{array}$
Mean	0.5072583	0.5074990	0.5071598	0.5070854	0.5072506
$\begin{array}{cc} \text { April } & 21-22 \\ " & 22-23 \\ " & 23-24 \\ " & 24-25 \end{array}$	$\begin{array}{r} 0.5072604 \\ 2591 \\ 2597 \\ 2601 \end{array}$	$\begin{array}{r} \text { April } \\ \\ 0.5075004 \\ 4999 \\ 4997 \\ 5005 \end{array}$	6. 0.5071601 1596 1602 1598	$\begin{array}{r} 0 \cdot 50 \circ 0862 \\ 0857 \\ 0860 \\ 0862 \end{array}$	$\begin{array}{r} 0 \cdot 502518 \\ 2511 \\ 2514 \\ 2516 \end{array}$
Mean	0.5072598	0.5075001	0.5071599	0.5070860	0.5072515
Change, April-Nor.	$+15$	+ 11	+ 1	+ 6	+ 9

The agreement between the November and April values is more satisfactory than in the preceding season; it will nevertheless be desirable to examine the differences between the individual pendulums and the mean pendulum in the same way as was done in Table III of Chap. III.

These differences are shewn in Table III for each set, and in Table IV the means for each station are given.

Table III.-Differences between Individual Pendulums and Mean Pendulum.

Table IV.-Differences between Individual Pendulums and Mean Pendulum.

Station		Dato	137	v	138	V	139	∇	140	V
Dehra Dun	...	$\begin{gathered} \text { 1905-06 } \\ \text { Nov. } 18-15 \end{gathered}$	- 77	+ 2	- 2484	$+4$	+ 908	- 4	+ 1652	- 3
Simla	...	Dec. 15-18	77	2	2488	0	908	4	1657	+ 2
Kalka	...	" 22-23	81	- 2	2500	- 12	925	$+13$	1656	1
Ludhiána	...	9 30.Jan. 4	73	+ 6	2491	3	906	- 6	1659	4
Mian Mir		Jan. 10-13	75	4	2493	5	908	4	1659	4
Ferozepore	\cdots	" 17-21	75	4	2492	4	909	3	1656	1
Pathánkot	...	Feb. 2-5	77	2	2485	+ 3	909	3	1652	- 3
Montgomery	...	" 17-20	80	-	2487	1	913	+ 1	1654	1
Dera Gházi Khan	...	" 27-Mar. 2	81	2	2487	1	912	\bigcirc	1654	1
Multán	\cdots	March 7-10	79	\bigcirc	2491	- 3	917	+ 5	1653	2
Jacobabad	\cdots	\% 15-18	80	1	2485	$+3$	907	- 5	1660	$+5$
Sibi	...	1) 21-26	81	2	2488	-	915	$+3$	1655	\bigcirc
Mach	\cdots	\% 29.31	82	3	2484	+ 4	916	4	1652	- 3
Quetts	-••	April 8-6	81	2	2487	1	913	+ 1	1655	\bigcirc
Dehra Dun	...	\% 21.25	83	4	2486	2	916	+ 4	1655	\bigcirc
		Mean ...	79	...	2488	\cdots	912	\cdots	1655	\cdots

There is no evidence of any pendulum having changed its length appreciably with reference to the mean, and a simple mean of the times of vibration at Dehra Dun, in November and April respectively, will be used for the deduction of g.

In the following table the times of vibration of each pendulum and of the mean pendulum are shewn, together with the differences from Dehra Dun and the resulting values of g. The value of g at Dehra Dun has been taken to be $979 \cdot 063$.

Table V.-Mean Times of Dibration and Deduced Values of g.

Station		137	138	139	140	Mean
Dehra Dan	8.	$0 \cdot 5072591$	$0 \cdot 5074996$	$0 \cdot 5071599$	$0 \cdot 5070857$	$0 \cdot 5072511$
Simls	$\begin{aligned} & 8 . \\ & g . \end{aligned}$	$\begin{array}{r} 0.5073165 \\ +574 \\ 978 \cdot 842 \end{array}$	$\begin{array}{r} 0.5075576 \\ +580 \\ 978.839 \end{array}$	$\begin{array}{r} 0 \cdot 5072180 \\ +581 \\ 978 \cdot 838 \end{array}$	$\begin{array}{r} 0.5071431 \\ +\quad 574 \\ 978.841 \end{array}$	$\begin{array}{r} 0.5073088 \\ +577 \\ 978 \cdot 840 \end{array}$
Kalka	$\begin{aligned} & s . \\ & g . \end{aligned}$	$\begin{array}{r} 0.5072373 \\ -218 \\ 979.147 \end{array}$	$\begin{array}{r} 0.5074792 \\ -204 \\ 979 \cdot 141 \end{array}$	$\begin{array}{r} 0.5071367 \\ -232 \\ 979.152 \end{array}$	$\begin{array}{r} 0.5070636 \\ -\quad 221 \\ 979.149 \end{array}$	$\begin{array}{r} 0.5072292 \\ -\quad 219 \\ 979.147 \end{array}$
Ludhiána	$\begin{aligned} & \varepsilon . \\ & g . \end{aligned}$	$\begin{array}{r} 0.5072038 \\ -\quad 553 \\ 979.277 \end{array}$	$\begin{array}{r} 0.5074456 \\ -540 \\ 979.271 \end{array}$	$\begin{array}{r} 0.5071059 \\ -540 \\ 979.271 \end{array}$	$\begin{array}{r} 0 \cdot 5070.306 \\ -551 \\ 979.276 \end{array}$	$\begin{array}{r} 0.5071965 \\ -546 \\ 979.274 \end{array}$
Mian Mir	$\begin{aligned} & s . \\ & g . \end{aligned}$	$\begin{array}{r} 0.5071756 \\ -835 \\ 979.384 \end{array}$	$\begin{array}{r} 0.5074174 \\ -822 \\ 979.380 \end{array}$	$\begin{array}{r} 0.5070773 \\ -826 \\ 979.382 \end{array}$	$\begin{array}{r} 0.5070022 \\ -8.35 \\ 979.385 \end{array}$	$\begin{array}{r} 0.5071681 \\ -8.30 \\ 979.383 \end{array}$
Ferozepore	8. g.	$\begin{array}{r} 0 \cdot 5071866 \\ -\quad 725 \\ 979.343 \end{array}$	$\begin{array}{r} 0 \cdot 5074283 \\ -713 \\ 979.338 \end{array}$	$\begin{array}{r} 0.5070882 \\ -717 \\ 979.340 \end{array}$	$\begin{array}{r} 0.5070135 \\ -\quad 722 \\ 979.342 \end{array}$	$\begin{array}{r} 0.5071791 \\ -720 \\ 979.341 \end{array}$
Pathánkot	8.	$\begin{array}{r} 0.5072138 \\ -453 \\ 979.238 \end{array}$	$\begin{array}{r} 0.5074546 \\ -450 \\ 979.236 \end{array}$	$\begin{array}{r} 0.5071152 \\ -447 \\ 979.235 \end{array}$	$\begin{array}{r} 0.5070409 \\ -448 \\ 979.236 \end{array}$	$\begin{array}{r} 0.507206 \mathrm{r} \\ -450 \\ 979.237 \end{array}$
Montgomery	g. g.	$\begin{array}{r} 0.5071923 \\ -668 \\ 979.321 \end{array}$	$\begin{array}{r} 0.5074330 \\ -666 \\ 979.320 \end{array}$	$\begin{array}{r} 0.5070930 \\ -669 \\ 979.321 \end{array}$	$\begin{array}{r} 0 \cdot 5070189 \\ -668 \\ 979.321 \end{array}$	$\begin{array}{r} 0.5071843 \\ -668 \\ 979.321 \end{array}$
Dera Ghazi Khan	s.	$\begin{array}{r} 0.5072258 \\ -333 \\ 979 \cdot 191 \end{array}$	$\begin{array}{r} 0.5074664 \\ -3.32 \\ 979 \cdot 191 \end{array}$	$\begin{array}{r} 0.5071265 \\ -334 \\ 979.192 \end{array}$	$\begin{array}{r} 0.5070523 \\ -\quad 3.34 \\ 979.192 \end{array}$	$\begin{array}{r} 0.5072177 \\ -334 \\ 979.192 \end{array}$
Multán	8. g.	$\begin{array}{r} 0.5072124 \\ -467 \\ 979.244 \end{array}$	$\begin{array}{r} 0.5074536 \\ -460 \\ 979.240 \end{array}$	$\begin{array}{r} 0.5071128 \\ -471 \\ 979.245 \end{array}$	$\begin{array}{r} 0.5070392 \\ -465 \\ 979 \cdot 242 \end{array}$	$\begin{array}{r} 0.5072045 \\ -466 \\ 979.243 \end{array}$
Jacobabad	s. g.	$\begin{array}{r} 0.5072272 \\ -\quad 319 \\ 979.186 \end{array}$	$\begin{array}{r} 0.5074677 \\ -319 \\ 979.186 \end{array}$	$\begin{array}{r} 0.5071285 \\ -3144 \\ 979.184 \end{array}$	$\begin{array}{r} 0.5070532 \\ -\quad 325 \\ 979.188 \end{array}$	$\begin{array}{r} 0.5072192 \\ -319 \\ 979.186 \end{array}$
Sibi	8. g.	$\begin{array}{r} 0.5072448 \\ -143 \\ 979.118 \end{array}$	$\begin{array}{r} 0.5074855 \\ -141 \\ 979.117 \end{array}$	$\begin{array}{r} 0.5071452 \\ -147 \\ 979.119 \end{array}$	$\begin{array}{r} 0.5070712 \\ -145 \\ 979.119 \end{array}$	$\begin{array}{r} 0.5072367 \\ -\quad 144 \\ 979.119 \end{array}$
Mach	8. g.	$\begin{array}{r} 0.5072861 \\ +270 \\ 978.959 \end{array}$	$\begin{array}{r} 0.5075263 \\ +\quad 267 \\ 978.959 \end{array}$	$\begin{array}{r} 0.5071863 \\ +264 \\ 978.96 t \end{array}$	$\begin{array}{r} 0.5071127 \\ +\quad 270 \\ 978.959 \end{array}$	$\begin{array}{r} 0.5072779 \\ +\quad 268 \\ 978.960 \end{array}$
Quette	g. g.	$\begin{array}{r} 0.5073142 \\ +551 \\ 978 \cdot 851 \end{array}$	$\begin{array}{r} 0.5075548 \\ +553 \\ 978.850 \end{array}$	$\begin{array}{r} 0.5072148 \\ +549 \\ 978.851 \end{array}$	$\begin{array}{r} 0 \cdot 50 ; 1406 \\ +549 \\ 978 \cdot 851 \end{array}$	$\begin{array}{r} 0.507306 \mathrm{I} \\ +550 \\ 978.85 \mathrm{I} \end{array}$

The Reduction to Sea-level.

Orographical corrections were required for six of the stations of this season, namely for Simla, Kálka, Pathannkot, Sibi, Mach and Quetta. A different method of analysing the masses lying in the several zones was employed this year. Hitherto the zones have been cut up into more or less numerous compartments or blocks and an estimate has been made of the mean height of each block, that is to say of the height it would have if it were levelled.

By this process it was frequently necessary to imagine tremendous changes of level to take place, for a block might, and often did, contain both a lofty peak and a deep valley; I have shewn in Chapter II that all such imaginary levellings introduce error, and it was to avoid large operations of this kind that I altered the method.

Movements of masses in azimuth have, as has been pointed out, no effect on the vertical component of their attraction; if therefore a zone be divided up by contours and we measure the areas of all parts lying between the different pairs of contours, we shall be able to ascertain what fraction of the whole zone lies for instance, between 100 feet and 200 feet, 200 feet and 300 feet etc. etc. above or below the pendalum station. In this way we can collect areas of similar height in a more efficient way than by grouping blocks together as has been done hitherto. In fact by this method the zone is broken up into its component parts along natural lines, instead of by means of arbitrarily drawn radii.

It may be said that this plan can only be followed if contoured maps are available, but even if only hill-shaded maps can be had it is not more difficult to draw in approximate contours, at wide intervals, by eye than it is to estimate the mean heights of blocks; indeed in complicated country it is generally necessary to put in some contour lines before any estimate can be made. The new method has also a practical advantage in that by it only a limited number of different heights in eack zone have to be dealt with: by the former method each block was likely to have a different height, so that in order to curtail the computation it was necessary to adopt some expedient involving a loss of accuracy. The advantage gained will be seen by comparing the tables of this year's computations with those of Chapter II.

Several methods of measuring the areas were tried, the one which I found most satisfactory was to draw radial lines at 5° intervals and then measure the total length of line intercepted between each pair of contours; in complicated country it proved very advantageous to draw the contours in different coloured inks so that each was instantly recognisable.

The intervals at which the contours should be drawn depend firstly on the distance of the area under consideration from the station. Up to half a mile 100 feet contours are desirable, thence up to 1 mile 200 feet, from 1 to 5 miles 500 feet, from 5 to 10 miles 1000 feet and from 10 miles to 35 miles 2000 feet. But this general rule may be modified according to the nature of the country and the kind of map that is available. In hilly country I like to have a special map on a scale of 12 inches to 1 mile for the immediate surroundings, that is to say up to a radius of about half a mile, a 4 -inch to a mile map up to 2 miles, a 1 -ineh map to 10 miles and thence a quarter-inch map, but it is very seldom that all these are obtainable.

The following tables contain the details of all the stations considered. Hitherto the differences between the heights of the compartments and that of the station have been given in the tables, but I have preferred in this chapter to give the actual heights of the parts into which the zones have been divided.

Table VI.—Orographical Correction at Simla.
Height 7043 feet.

No. of Zone	1	2	3	4	5	6	7
Inner radius Outer radius	$\begin{aligned} & 100 \text { feet } \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \text { feet } \\ & 400 \text { " } \end{aligned}$	$\begin{aligned} & 400 \text { feet } \\ & 600 \text { ", } \end{aligned}$	$\begin{aligned} & 600 \text { feet } \\ & 1000 \text { " } \end{aligned}$	$\begin{aligned} & 1000 \text { feet } \\ & 1500 \text { ", } \end{aligned}$	$\begin{aligned} & 1500 \text { feet } \\ & 2000 \text { " } \end{aligned}$	$\begin{aligned} & 2000 \text { feet } \\ & 2640 \text { " } \end{aligned}$
Height	Fraction	Fraction	Fraction	Fraction	Iraction	Fraction	Praction
feet 5950							0.028
6050							-054
6150						0.023	117
6250				,		$\cdot 100$	$\cdot 130$
6350					0.129	- 122	- 087
6450				0.027	$\cdot 183$	- 098	-079
6550				$\cdot 184$	-118	-131	- 092
6650			$0 \cdot 102$	$\cdot 352$	${ }^{1} 3^{6}$	-110	$\cdot 071$
6750		0.036	$\cdot 377$	$\cdot 147$	- 151	${ }^{1} 37$	- 132
6850		$\cdot 246$	$\cdot 260$	-097	'111	-078	-07\%
6950		- 597	$\cdot 232$	-149	-09\%	-095	. 050
6980	0.60						
7000		- 044	- 029	- 044			
7030	$\cdot 40$	$\cdot 077$			-056	- 050	- 041
7100						-	
7150					-019	-035	- 028
7200						-021	. 014
Effect	$5 \cdot 9$	$16 \cdot 6$	19.9	$34 * 4$	$28 \cdot 0$	$18 \cdot 3$	21.2

Table VI.—Orographical Correction at Simla-(Continued). Height 7043 feet.

No. of Zone	8	9	10	11	12	13	14	
Inner radius Outer radius	$\begin{aligned} & \frac{1}{2} \text { mile } \\ & \frac{3}{4} \text {, } \end{aligned}$	$\begin{aligned} & \frac{3}{4} \text { mile } \\ & 1 \quad \text { " } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \end{aligned}$	$\frac{1 \frac{1}{2} \text { miles }}{2}$	$\begin{aligned} & 2 \text { miles } \\ & 3 \text { " } \end{aligned}$	$\begin{aligned} & 3 \text { miles } \\ & 4 \\| " \end{aligned}$	$\begin{aligned} & 4 \text { miles } \\ & 5 \% \end{aligned}$	
Height	Fraction							
$\begin{aligned} & \text { feet } \\ & 4250 \end{aligned}$		-				-	0.15	
4750				0.02	0.05	$0 \cdot 30$	$\cdot 18$	
5250			$0 \cdot 13$	$\cdot 09$	$\cdot 22$	$\cdot 24$	$\cdot 18$	
5750	0.14	0.36	$\cdot 23$	$\cdot 20$	$\cdot 32$	$\cdot 28$	'17	
6250	$\cdot 44$	$\cdot 38$	$\cdot 22$	$\cdot 26$	$\cdot 30$	$\cdot 19$	- 12	
6750	$\cdot 36$	$\cdot 27$	$\cdot 23$	$\cdot 29$	-05	. 05	- 06	
7250	. 06	$\cdot 09$	$\cdot 14$	$\cdot 14$	-06	-03	-99	
7750			$\cdot 05$			- 01	-05	
Effect	$30 \cdot 9$	$21 \cdot 0$	$30 \cdot 2$	14.1	$26 \cdot 5$	19.3	14.7	
No. of Zone	15	16	No. of Zone	17	18	19	20	
Inner radius Outer radius	$\underset{7}{5} \text { miles }$	$\begin{gathered} 7 \text { miles } \\ 10 ~ \end{gathered}$	Inner radius Outer radius	$\begin{aligned} & 10 \text { miles } \\ & 15 ״ \end{aligned}$	$\begin{aligned} & 15 \text { miles } \\ & 20 " \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 " \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 35 \text { " } \end{aligned}$	
Height	Fraction	Fraction	Height	Fraction	Fraction	Praction	Fraction	
$\begin{aligned} & \hline \text { feet } \\ & 2500 \end{aligned}$		0.04	feet 1000				$0 \cdot 02$	
3500	0.06	-19	2000	$0 \cdot 16$	0.12	$0 \cdot 26$	$\cdot 39$	
4500	$\cdot 38$	3°	4000	$\cdot 54$	$\bullet 44$	$\cdot 28$	$\cdot 16$	
5500	$\cdots 30 \cdot$	$\cdot 19$	6000	$\cdot 24$	$\cdot 34$	$\cdot 19$	$\cdot 21$	
6500	$\cdot 15$	$\cdot 18$	8000	. 06	- 10	$\cdot 22$	$\cdot 18$	
7500	- 08	- 08	10000			-05	- 04	
8500	-03	-02						
Effect	21.1	22.6	Effect	28.6	119	9.4	13^{2}	

Total effect of zones up to a radius of 35 miles $=407.7$
Attraction $. . . \quad=407 \cdot 7 \times 0 \cdot 000035=0.0143$.

For the region lying beyond the 35 -mile radius we may assume that half is at a constant level of 1000 feet, and that the other half may be divided into 3 portions, namely a quadrant from north to east at an elevation of 10000 feet, a sector from north to 60° west of north at 6000 feet and a sector from east to 30° south of east also at 6000 feet.

The difference between the attraction of these masses and that of the infinite plain at the height of the station, outside the 35 -mile radius, is

$$
\begin{aligned}
& 0.000035\left(\frac{1}{35 \times 5280}\right) \cdot \frac{1}{3} \cdot\left\{6000^{2} \times \frac{1}{3}+3000^{2} \times \frac{1}{4}+1000^{2} \times \frac{1}{4}\right\} \\
&=0.00194
\end{aligned}
$$

The total orographical correction is therefore

$$
0.0143+0.0019=0.0162
$$

Table VII.—Orographical Correction at Kalka. Height 2202 feet.

No of Zone	1	2	8	No. of Zone	4	5	6	7
Inner Radius Outer Radius	$\left\|\begin{array}{c} 1500 \text { feet } \\ 2000 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 2000 \text { feet } \\ & 2640 \Rightarrow \end{aligned}\right.$	$\frac{1}{\frac{1}{4} \text { mile }}$	Inner Radius Outer Radius	$\begin{aligned} & \frac{3}{4} \text { mile } \\ & 1 \end{aligned}$	1 mile 2 miles	$\begin{aligned} & 2 \text { miles } \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \text { miles } \\ & 4 n g \end{aligned}$
Height	Praction	Hraction	Fraction	Height	Fraction	Fraction	Praction	Fraction
foot				$\begin{aligned} & \text { feet } \\ & 1750 \end{aligned}$			$0 \cdot 38$	0.44
				1950	$0 \cdot 01$			
				2000	- 01	$0 \cdot 59$		
2200	0×75	0×75	0.73	2200	$\cdot 67$		-09	. 07
2400	$\cdot 25$		$\cdot 13$	2350	-03	$\cdot 13$	- 11	$\cdot 04$
2525		$\cdot 25$		2450	$\cdot 12$			
2700			$\cdot 12$	2550	-09			
				2650	- 07			
				2750		$\cdot 21$	$\cdot 09$	-06
				3500		-07	$\cdot 25$	$\cdot 17$
				4500			- 08	$\cdot 15$
				5500				-07
Effect	$0 \cdot 75$	$1{ }^{19} 0$	$2 \cdot 32$	Effect	$0 \cdot 99$	9•9	15*19	14.86

Table VII.-Orographical Correction at Kalka-(Continued).
Height 2202 feet.

No. of Zone	8	9	10	No. of Zone	11	12	13	14
Inner Radius Outer Radius	$\begin{aligned} & 4 \text { miles } \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \text { miles } \\ & 7 \end{aligned}$	$\begin{gathered} 7 \text { miles } \\ 10 \end{gathered}$	Inner Radius Outer Radius	$\begin{array}{\|l\|} 10 \text { miles } \\ 15 ~ \end{array}$	$\begin{aligned} & 15 \text { miles } \\ & 20 \quad \# \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 \quad " \end{aligned}$	$25 \text { miles }$ $35 \text {, }$
Height	Fraction	Fraction	Fraction	Height	Fraction	Fraction	Fraction	Fraction
feet 1400		0.19	0.27	feet 900	$0 \cdot 16$	0.28	$0 \cdot 32$	$0 \cdot 38$
1800	$0 \cdot 38$	$\cdot 31$	$\cdot 31$	1200	$\cdot 27$	$\cdot 17$	$\cdot 14$	$\cdot 11$
2200	$\cdot 17$	-03	-05	1800	- 05	$\cdot 03$	-05	-06
2800	-05	-97	-09	2600	$\cdot 09$	$\cdot 12$	$\cdot 09$	$\cdot 10$
3500	$\cdot 19$	$\cdot 16$	$\cdot 16$	4000	$\cdot 33$	$\cdot 33$	$\cdot 21$	$\cdot 17$
4500	$\cdot 15$	- 20	$\cdot 15$	6000	$\cdot 10$	$\cdot 07$	$\cdot 17$	$\cdot 10$
5500	-06	- 04	-07	8000			- 02	- 07
				10000			-	$\cdot 01$
Effeet	$8 \cdot 8$	$10 \cdot 7$	8.4	Effect	$9 \cdot 6$	4.4	$4 \cdot 3$	$6 \cdot 0$

Total effect of zones within 35 -mile radius $=97 \cdot 7$
Attraction $\quad=97.7 \times 0.000035=0.0034$
The outer zones may be divided into four sectors:-

Sector	Angle	Height feet.
1.	220	1000
2.	20	4000
3.	90	7000
4.	30	4000

The addition to the orographical correction on their account amounts to 0.0007 .
The total orographical correction is therefore

$$
0.0034+0.0007=0.0041
$$

Table VIII.-Orographical Correction at Pathánkot.
Height 1088 feet.

No. of Zone	1	2	3	4	5	6
Inner Radius Outer Radius	$\begin{aligned} & 8 \text { miles } \\ & 12 \end{aligned}$	12 miles 16 n	$\begin{aligned} & 16 \text { miles } \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 \text { " } \end{aligned}$	25 miles 30 "	$\begin{aligned} & 30 \text { miles } \\ & 35 \quad \text { " } \end{aligned}$
Height	Iraction	Fraction	Iraction	Fraction	Fraction	Fraction
foet 1100	$0 \cdot 85$	$0 \cdot 75$	0.66	0.65	0.62	$0 \cdot 60$
2300	$\cdot 15$	$\cdot 25$				
3000			$\cdot 32$	$\cdot 39$	$\cdot 15$	$\cdot 12$
4000			- 02			
5000				$\cdot 13$	- 10	- 11
7000				-02	$\cdot 10$	-12
9000					$\cdot 03$	- 05
Effect	0.9	$0 \cdot 7$	$1 \cdot 6$	3.2	4.9	$3 \cdot 6$

Total effect of zones within 35 -mile radius $=14.9$
Attraction $=14.9 \times 0.000035=0.0005$
Beyond the 35 -mile radius the zones may be divided into 4 sectors:-

Sector	Angle	Height feet.
1.	180	1100
2.	45	5000
3.	90	8000
4.	45	3000

. The addition to the orographical correction on account of the outer zones is therefore 0.0014

And the total orographical correction becomea $0.0005+0.0014=0.0019$

Table IX.—Orographical Correction at witi.
Height 434 feet.

No. of Zone	1	2	3	4	5
Inner Radius Orter Radius	7 miles	10 miles 15 "	15 miles 20 "	20 miles 25	25 35 miles
Height	Iraction	Frraction	Fraction	Fraction	Frraction
feot 450	0.88	0.62	$0 \cdot 49$	$0 \cdot 30$	$0 \cdot 25$
750	$\cdot 12$	- 22	. $\cdot 25$	$\cdot 28$	$\cdot 12$
1550		$\cdot 16$	$\cdot 22$	$\cdot 34$	- 28
2250			$\cdot 04$		
2450			.	- 08	$\cdot 24$
8550					-08
4450					$\cdot 03$
- Effect	\bigcirc	$0 \cdot 7$	$0 \cdot 7$	0.7	$2 \cdot 7$

Total effect of zones within 35 -mile radius $=4.8$
Attraction $=4.8 \times 0.000035=0.0002$
The outer zones contain much higher hills and table-lands than come within the 35 -mile circle. The region may be divided up into 4 sectors :Sector

1. From North to East,
2. From East to S.E.,

Angle Height
3. From S.E. to $30^{\circ} \mathrm{W}$. of S., 75450
4. From $30^{\circ} \mathrm{W}$. of S . to North, 150

5500
The attraction of the masses lying above the 450 -foot plain outside the $\mathbf{3 5}$-mile circle is $0 \cdot 0014$

Hence the total orographical correction $=0.0014+0.0002=0.0016$

Table X.-Orographical Correction at Mach.
Height 3523 feet.

No. of Zone	1	2	3	4	No. of Zoné	5	6	7
Inner Radius Outer Radius	$\left\lvert\, \begin{aligned} & 1000 \text { feet } \\ & 5280 \quad " \end{aligned}\right.$	1 mile 2 miles	$\underset{a}{2} \text { miles }$	$\begin{aligned} & 4 \text { miles } \\ & 7 \text { " } \end{aligned}$	Inner Radius Outer Radius	$\begin{aligned} & 7 \text { miles } \\ & 10 \% \end{aligned}$	$10 \text { miles }$ 15	$15 \text { miles }$ $20 \Rightarrow$
Height	Fraction	Fraction	Fraction	Fraction	Height	Fraction	Fraction	Fraction
feet $2 \varepsilon 00$				$0 \cdot 05$	feet 1500	0.05	0.12	0.13
2700				- 11	2700		$\cdot 16$	
2800				-07	2800	$\cdot 22$		$\cdot 24$
2900		0.13	0. 16		4500	$\cdot 24$	- 20	-09
3200		$\cdot 45$	$\cdot 18$		5800			$\cdot 23$
3300	0.5			$\cdot 14$	6000		$\cdot 22$	
3700	$\cdot 5$		$\cdot 24$		6500	$\cdot 37$	$\cdot 21$	$\cdot 26$
3800		$\cdot 42$			8000		-04	
4500				$\cdot 20$	8500	$\cdot 12$	-03	$\cdot 05$
4800			$\cdot 30$					
5700	-			$\cdot 24$				
6000			$\cdot 12$					
6800				$\cdot 17$	-			
7700				$\cdot 02$				
Effect	16.2	$6 \cdot 0$	$31 \cdot 7$	$38 \cdot 1$	Effect	$28 \cdot 0$	$19 \cdot 1$	8.9

Table X.—Orographical Correction at Mach.-(Continued).
Height 3522 feet.

No. of Zone	8	9	10
Inner Radius Outer Radius	$\begin{aligned} & 20 \text { miles } \\ & 25 \text { " } \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 30 \text { " } \end{aligned}$	$\begin{aligned} & 30 \text { miles } \\ & 35 \text { " } \end{aligned}$
Height	Fraction	Fraction	Fraction
feat 800	0.03	0.13	0.14
1500	$\cdot 17$	$\cdot 09$	$\cdot 11$
2700	$\cdot 19$	$\cdot 12$	-06
4500	-06	${ }^{1} 3$	- 16
5200	\cdots	$\cdot 04$	$\cdot 13$
6200	$\cdot 39$	$\cdot 33$	$\cdot 28$
8000	$\cdot 03$	$\cdot 12$	$\cdot 10$
8500	- 11	...	\cdots
10000	$\cdot 02$	$\cdot 04$	-02
Effect	$7 \cdot 7$	$5 \cdot 4$	$2 \cdot 6$

Total effect of zones within 35-mile radius $=163 \cdot 7$
Attraction $=163.7 \times 0.000035=0.0057$
The region lying beyond the 35-mile circle may be divided into six sectors :-
Sector
Angle
Height

1. N. to N. E.

0	feet
45	6000
80	3000
55	300
45	6000
45	4000
90	5000

The orographical correction on account of the outer zones is 0.00036

And the total orographical correction is $0.0057+.0004=0.0061$

Table XI.—Orographical Correction at Quetta.
Height 5520 feet.

No. of Zone	1	2	3	4	5	6
Inner Radius Outer Radius	$\begin{aligned} & 2 \text { miles } \\ & 3 \quad " \end{aligned}$	$\begin{aligned} & 3 \text { miles } \\ & 4 \% \end{aligned}$	$\begin{aligned} & 4 \text { miles } \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \text { miles } \\ & 6 \# \# \end{aligned}$	$\begin{aligned} & 6 \text { miles } \\ & 7 " \# \end{aligned}$	$\begin{gathered} 7 \text { miles } \\ 10 \text { " } \end{gathered}$
Height	Fraction	Fraction	Fraction	Fraction	Fraction	Fraction
fret 6500	0.89	0.76	0.51	0.28	$0 \cdot 31$	0.16
5800	...	- 08	$\cdot 12$	$\cdot 21$	'15	\ldots
6300	-59
6500	$0 \cdot 11$	- 07	- 19	$\cdot 22$	$\cdot 28$...
7500	...	$\cdot 07$	$\cdot 12$	$\cdot 16$	$\cdot 14$...
8000	$\cdot 25$
8500	...	$\cdot 02$	-06	$\cdot 13$	$\cdot 12$...
Effect	$1 \cdot 7$	4.2	$5 \cdot 8$	6.4	4.4	7×9
No. of Zone	7	8			10	11
Inner Radius Outer Radius	$10 \text { miles }$ $15 \text { " }$	$15 \text { miles }$ $20 \quad "$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$		$\begin{aligned} & 25 \text { miles } \\ & 30 " \text { " } \end{aligned}$	$30 \text { miles }$ $35 \quad \text { " }$
Height	Fraction	Fraction	Fra	ion	Fraction	Fraction
feet 2500	0.08
4500	\ldots	...			0.07	$\cdot 12$
5500	0.27	$0 \cdot 30$		49	$\bullet 49$	$\cdot 42$
6200	$\cdot 50$	$\cdot 43$		33	-35	$\cdot 27$
8000	$\cdot 20$	$\cdot 19$		13	$\cdot 09$	$\cdot 11$
10000	$\cdot 03$	-08		02
Effect	$6 \cdot 6$	4.9		3	0.5	0.6

$\begin{array}{ll}\text { Total effect of zones within } 35-\text { mile radius }=44 \cdot 3 \\ \text { Attraction }= & 44 \cdot 3 \times 0 \cdot 000035=0.0016\end{array}$
The regions beyond the 35 -mile circle may be divided into six sectors as follows :-

Sector

1. N. to N. E.
2. N.E. to E.
3. E. to $30^{\circ} \mathrm{S}$. of \mathbf{E}.
4. $30^{\circ} \mathrm{S}$. of E. to $10^{\circ} \mathrm{E}$. of S.
5. $10^{\circ} \mathrm{E}$. of S. to $50^{\circ} \mathrm{W}$. of S .
6. $50^{\circ} \mathrm{W}$. of S . to N .

Angle
45
45
30
50
60
130

Height
feet
5000
6000
2500
300
6000
3500

The addition to the orographical correction on account of the onter regions is

$$
0 \cdot 0006
$$

Hence the total orographical correction is

$$
0.0016+0.0006=0.0022
$$

In Table XII the results of the season's work are colfected and the values of $g_{0}{ }^{\prime \prime}$ and γ_{0} computed and compared; γ_{0} has, as before, been derived from Helmert's formula of 1884, namely, $\gamma_{0}=978.00\left(1+0.005310 \sin ^{2} \phi\right)$
where ϕ is the latitude of the station of observation.
Table XII.-Abstract of Final Results.

Station	Latitude	Height	Observed g	$g \frac{2 h}{\bar{R}}$	$g \frac{3}{4} \frac{h}{R}$	0	Value at sea level $g_{0}{ }^{\prime \prime}$	γ_{0}	$g_{0}{ }^{\prime \prime}-\gamma_{0}$
Simla	$\begin{array}{ccc}0 & \prime \\ 31 & 6 & 19\end{array}$	feet 7043	978•840	$+0.657$	-0.246	+0.016	979*267	979 386	-0.119
Kálka ...	30508	2202	979*147	+0. 205	-0.077	+0.004	979*279	979 364	-0.085
Ludhiána ...	305525	835	979 274	+0.078	-0.029	$0 \cdot 00$	979*323	979 371	-0.048
Mian Mir ...	313137	708	979*383	+0.066	-0.025	$0 \cdot 00$	979*424	979*420	+0.004
Ferozepore ...	305548	647	979 341	+0.060	-0.023	$0 \cdot 00$	979*378	979 372	+0.006
Pathánkot ...	321633	1088	979 237	+0.101	-0.038	+0.002	979*302	979 ${ }^{\text {4 }}$ 8 1	-0.179
Montgomery ...	303947	557	979 321	+0.052	-0.019	$0 \cdot 00$	979*354	979 351	+0.003
Dera Gházi Khan	$30 \quad 349$	397	979*192	+0.037	-0.014	$0 \cdot 00$	979 215	$979 * 303$	-0.088
Multán ...	301111	404	979*243	+0.038	-0.014	$0 \cdot 00$	979 267	979*312	-0"045
Jacobabad ...	$28 \quad 16 \quad 34$	183	979 - 186	+0.017	-0.006	$0 \cdot 00$	979*197	979* 166	+0.03I
Sibi	293246	434	979*119	+0.040	-0.015	+0.002	97.9-146	979*262	-0.316
Mach ...	295225	3522	978•960	+0.328	-0.123	+0.006	979 ${ }^{171}$	979*288	-0.117
Quetta ...	301215	5520	978.851	+0.515	-0.193	+0.002	979 1 175	979*314	-0.139

144

The difference between g at Dehra Dún and g at Mian Mir is by these observations $(979.063-979.383)=-0.320$
On p. [120] of Volume V. Op. G. T. S. we find Basevi's Vibration Numbers to have been

At Dehra Dún At Mian Mir	$\begin{aligned} & 86020 \cdot 86 \\ & 86034 \cdot 55 \end{aligned}$
Difference $=$ -	13.69
Now dg	$\frac{2 g}{\mathrm{~N}} d \mathrm{~N}$
	$\underline{2 \times 979.063}$
	86021

Hence the difference between the new result and the old is 0.009 , which is not very large. It does not appear therefore that the special stand used by Basevi at Miau Mir and Moré introduced any large error.

CHAPTER V.

The Operations in 1906-07.

The object of the observations undertaken in 1906-07 was the examination in greater detail of the variation in the force of gravity at the foot of the Himalayas and in the neighbourhood of the Siwálik range.

The information on this subject obtained by the work of the former seasons consists of four facts, namely the values of the quantity $\left(g_{0}{ }^{\prime \prime}-\gamma_{0}\right)$ at Pathánkot, Kálka, Dehra Dún and Siliguri.

Pathánkot is situated about 8 miles from the Siwaliks and 16 miles from the Himalayas, but the two ranges are not clearly divided in this locality, the topography being confused and difficult. The value of $\left(g_{0}{ }^{\prime \prime}-\gamma_{0}\right)$ is here $-0 \cdot 179$.

At Kálka which is at the foot of the Himalayas, with the Siwáliks lying 2 miles to the south-west, $g_{0}^{\prime \prime}-\gamma_{0}=-0.085$.

At Dehra Dún which lies about half way between the Siwfliks and the Himalayas at a point where they are quite distinct and separated by about 10 miles, $g_{0}{ }^{\prime \prime}-\gamma_{0}=-0 \cdot 126$; and at Siliguri situated about 7 miles from the Himalayas at a place where the Siwáliks are merged in their great neighbour, $g_{0}{ }^{\prime \prime}-\gamma_{0}=-0 \cdot 137$.

Our present information then shows that the deficiency in gravity is by no means constant, but we do not know whether the variations are strictly local in character or whether they are rather to be classed as regional.

The pendulum stations of $1906-07$ were chosen with a view to gaining more knowledge of these variations.

The stations selected may be divided into four classes, namely,

1. At the foot of the Himalayas, $\begin{aligned} & \text { Rajpur } \\ & \text { Kálsi }\end{aligned}$
2. Midway between the Himalayas and Siwaliks, ... Fatehpur.
3. In the Siwáliks,
4. Outside the Siwáliks but not far from them,
\{Hardwár
$\cdots\left\{\begin{array}{l}\text { Mardwar } \\ \text { Mohan } \\ \text { Asarori }\end{array}\right.$
$\ldots\left\{\begin{array}{l}\text { Roorkee } \\ \text { Nojli }\end{array}\right.$

Another important object is the location of the position of the line where the excess of the observed over the computed force of gravity attains a maximum.

The existence of such a line, running more or less parallel to the Himalayas, and about 130 miles from them, was deduced from the latitude observations by Colonel Burrard in Professional Paper No. 5, and the lines of pendulum observations of 1904-05 and 1905-06 crossed it near Kisnapur, and between Montgomery and Mián Mir, respectively. Three more stations, extending southwards along the Great Arc of Meridian from Nojli, were therefore added to the programme. Kaliána, which was Basevi's Base station, was the most northerly of the three, the others being Meerut and Gesupur.

The descriptions of the stations are given in the order in which they were visited.

THE STATIONS.

Hardwar.

			\circ	\prime	$\prime \prime$
Latitude	\ldots	\ldots	29	56	29
Longitude	\ldots	\ldots	78	9	19
Height above mean sea level	...			949	feet

The .pendulum station was in a small canal bungalow on the right bank of the Ganges Canal about 200 yards below the Mayapur Bridge.

The height was determined by levelling from a bench-mark on the bridge.

Roorkee.

| Latitude | \ldots | \ldots | 29 | 52 | 20 |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| Longitude | \ldots | \ldots | 77 | 53 | 59 |
| Height above mean sea level | \ldots | | 867 | feet | |

The pendulum station was in a large room at the N. E. corner of P. W. D. Inspection House, generally called the Malakpur Bungalow.

The height was determined by levelling from nearest bench-mark on the bank of the Ganges Canal.

The room was a very good one with a steady temperature and a thick floor.

Nojli.

The pendulums were swung in the ground floor room of Nojli Tower Station of the G. T. Survey. The space afforded by the room was scarcely sufficient and the temperature was difficult to control. The height given is that derived from the Principal Triangulation.

Kaliana.

L		29	30	
Longitude		810 feet		
Height above mean sea level				

The pendulums were swung in the east room of the observatory built in 1836 by Major, afterwards Sir George Everest. In this room the Invariable Pendulums were swung by Basevi
in January 1866, in May of the same year, and in April 1870; also by Heaviside in January 1873. The Russian Reversible Pendulums were swung in the same room by Heaviside in February 1873. The observatory is a station of the Principal Triangulation and the height given is that derived from the vertical angles.

As this station is of exceptional importance 5 complete sets of observations were made here.

Meerut.

			0	\prime	$" 1$
Latitude	\ldots	\ldots	29	0	26
Longitude	\ldots	\ldots	77	41	40
Height above mean sea level	\ldots		734	feet	

The pendulum station was in the south-western room of Bungalow No. 163, which is the last house but one from the western end af the Mall, on the south side.

The height was determined by levelling from a bench-mark of the G. T. Survey on the Church steps.

The observations at Meerut were spread over a period of nearly a month. This was done for reasons unconnected with the pendulum work; it has the effect of rendering the three determinations more independent of each other than is usually the case.

Gesupur.

			\bullet	\prime	$"$
Latitude	\ldots	\ldots	28	33	2
Longitude	\ldots	\ldots	77	42	3
Height above mean sea level	\ldots		691	feet	

The pendulums were swung in the north-western room of the bungalow belonging to the Irrigation Department on the left bank of the Ganges Canal near the village of Gesupur.

The height was determined by levelling from a canal bench-mark on the plinth of the milestone marked " 120 miles from Maiapur".

Mohan.

	Mohan.			\circ	
Latitude	\ldots	\ldots	30	10	53
Longitude	\ldots	\ldots	77	54	37
Height above mean sea level	\ldots			1660	feet

The peudulum station was in the eastern of the two larger rooms of the Forest Resthouse, which stands on a spur of the Siwaliks on the western side of the main road from Saháranpur to Rájpur.

The height was determined by levelling from the Mohan Bench-mark of the G. T. Survey. At this and the subsequent stations only two complete sets of observations were made.

Asarori.				0	,	$\prime \prime$
Latitude	\ldots	\ldots	30	14	25	.
Longitude	\ldots	\ldots	77	58	3	
Height above mean sea level	\ldots		2467	feet		

The pendulums were swung in the largest room of the P. W. D. Rest-honse which stands on the westeru side of the Saháranpur-Rajpur road, a little less than 14 miles from Rajpur.

The height was determined by levelling from the Mohobawala Bench-mark of the G. T. Survey. At the close of the second set of swings stars could not be obtained and continuity was carried on to the next night by swinging two pendulums at night and the other two at the corresponding hours next morning.

Dehra Dún was visited and one set of observations made on the way from Asarori to Fatehpur.

	Fatehpur.	-		
Latitude	\ldots...	30	25	53
Longitude		77	43	37
Height abo	nea level			

The pendulums were swung in the northernmost of the three large rooms of the Military Works Service Inspection Bungalow.

There is a secondary triangulation station on the roof of this bungalow and the co-ordinates given are those of this station, the height being reduced to floor level.

The pendulum station was in a bungalow belonging to the Military Works Service, which stands about 150 yards east of the Iuspection Bungalow. The latter is commonly called the Kálsi Bungalow, but it should more properly be called the Haripur Bungalow, for the large village of Kálsi is about 2 miles further up the Chakrata road.

The height was determined by levelling from the site of an old station of the triangulation, called 'Gular Ghat'. The station had been washed away by the Jumna some years before but it was possible to identify its position with fair accuracy. The height given above may very possibly be in error by 5 feet, but is not likely to be 10 feet from the truth.

Rajpur.

Latitude	\ldots	\ldots	30	24	12
Longitude	\ldots	\ldots	78	5	47
Height above mean sea level	\ldots		3321	feet	

The pendulums were swung in a room lent by the Himalaya Glass Works. The room was one of those on the northeru side of the main building which stands about 100 yards south of the public road.

The height was determined by levelling from a bench-mark of the G. T. Survey on the plinth of a house in Rajpur about 250 yards east of the peurdulum room.

From Rajpur the pendulums were brought back to Dehra Dún and three complete sets of observations were made with them there.

The set made between the observations at Asarori and Fatehpur has been included with these three in deducing the values of the time of vibration closing.

The results of the determinations of the flexure correction at each station are given in Table I.

Table I. Flexure Correction.

					Tempera－ ture		Density of Air	Observed Time of Vibration	Correction on account of						Reduced Time of Vibration
										－	烒	䮃	出	浐	
28－29 December， 1906.															
137	$\begin{array}{ll}h & m \\ 4 & 22\end{array}$	$\|34 \times 390\|$	8 +0.25 0.	21	$16^{\circ} 29$	$-0^{\circ} \cdot 06$	0.916	－． 5073768			－798		－ 544		$\bigcirc{ }^{5} \times 5072340$
139	524	34－835	0.25	19	16.28	0.06	0.916	$0 \cdot 5072812$		10	798		555		$0 \cdot 5071375$
138	${ }_{6} 28$	33．310	0.25		16.21	0.06	0.916	－ 5076195			794		524		－． 5074792
140		35－179	0.25			0.06	0.916	－ 5072090			790		555		$0 \cdot 5070662$
137	1634	34．426	＋ 0.25	19	14.51	＋0．33	0.921	－． 5073688				宏	－ 547		$0 \cdot 5072346$
139	1726	34．860	0.25	20	14.82	0.32	0.919	－ 50.52760		11	726		557	59	$0 \cdot 5071392$
138	183	［33•327			15．16	$0 \cdot 32$	0.917	$\bigcirc \cdot 5076155$						59	$0 \cdot 5074802$
140	1932	35－191	0.25		11548		． 0.916	0.5072065			759		555	59	$0 \cdot 5070667$
Time of Vibration of Mean Pendulum															0.5072302
															0.5072297

Table II. Details of the Observations-(Continued).

$\begin{aligned} & \text { 豆 } \\ & \text { 를 } \\ & \text { م } \end{aligned}$					Tempera－ ture			Observed Time of Vibration	Correction on account of						Reduced Time of Vibration
										只		－		易	
10．11 April，190\％．															
		${ }_{34}{ }^{8} 999$	＋0．03												
140 138	10 53	｜34．999	+0.03 0.03	22	23 23	－0．05	－ 0.860	－ 5076571			－1161		$\begin{array}{r}521 \\ -492 \\ \hline\end{array}$		$0 \cdot 5070698$ $0 \cdot 5074834$ -5074
139	1248	34－664	$0 \cdot 03$	22	23.64	0.05	－ 8680	－ 0.5073178			1158		521		0.5071415
137	1349	34－221	0.03		23.55	0.05		－$\cdot 5074138$			1154		510	69	$0 \cdot 5072392$
													Mean	．．．	0.5072335
140 138 18	2258 2360	｜35＊025	$\begin{array}{r}+0.03 \\ 0.03 \\ \hline 0.3\end{array}$	20	22.92 23.06	＋0．14	0.865 0.863	$0 \cdot 5072411$ 0.5076530			1123 1130	$\stackrel{\rightharpoonup}{\circ}$	－ 524	－69	$0 \cdot 5070682$
138 139	${ }^{23} 60$	退3．167	0.03 0.03	23	23.06 23.18	0.14 0.14	0.863 0.863	0.5076530 0.5073160						69	－ 0.5074821
139 137	－ 54	\mid	0.03 0.03	21	23.18 23.33	0.14 0.14	0.863 0.861	－ $0 \cdot 5073160$ $-\cdot 5074136$						69 69	O．5071418
$\begin{array}{rr}\text { Mean } \\ \text { Tine } & \text { ．．．} \\ \text { dibration of Mean Pendulum }\end{array}$															－ 5072330
															0.5072333

Rajpur．
18－19 April，190\％．

Dehra Dun．
29－30 March 1907．

the time of vibration at dehra dun.
The observations at Dehra Dún in November give values of the times of vibration which agree well with those of the previous April, namely :-

Pendulum	137	138	189	140	Mean
April, 1906	0.5072598	0.5075001	0.5071599	0.5070860	0.5072515
Nov., 1906	0.5072598	0.5075005	0.5071599	0.5070866	0.5072517

But the observations at Hardwár shewed that a change had taken place in Pendulum No. 137 relatively to the others since the conclusion of the work at Dehra. I have no suggestion to offer as to the cause of this change; the journey is a very short one, the pendulums were packed and handled with the usual care and no accident of any kind is believed to have occurred.

To decide upon the best value of the time of vibration at Dehra Dún it is again necessary to have recourse to the differences between the individual pendulums and the mean pendulum. They are exhibited in 'lable III, the mean values at each station being given. At the beginning of the table the mean values for the former season, as shewn in Table IV, Chapter IV, are entered for comparison.

Table III.—Differences between Individual Pendulums and Mean Pendulum.

Station	Date	187	V	138	-	139	V	140	V
Mean of all stations	1905.06	- 79	...	- 2488	\cdots	+ 912	\cdots	$+1655$	\cdots
Dehra Dán ...	$\begin{gathered} 1906 \\ \text { Nov. } \quad 26-29 \end{gathered}$	81	...	2488	\ldots	918	\cdots	1651	...
Hardwhr ...	$\text { Dec. } \quad \begin{gathered} 1906 \\ 7-10 \end{gathered}$	- 52	+ 3	- 2500	- 3	+ 909	- 3	1645	+ 6
Roorkee	$\cdots \quad 16.21$	55	0	2497	\bigcirc	912	0	1640	1
Nojli ...	" 26-29	50	$+5$	2499	- 2	907.	- 5	1641	2
Kaliána	$\text { Jan. } \quad \begin{gathered} 1907 \\ 4-11 \end{gathered}$	51	4	2500	3	909	3	1641	2
Meerut ...	" 31-Feb. 25	50	5	2496	+ 1	909	3	1636	- 3
Gesupur ...	March 3-6	56	- 1	2498	- 1	914	+ 2	1640	+ 1
Mohan ...	" 16-18	56	1	2498	1	915	3	1640	1
Asarori	" 24-27	56	1	2496	+ 1	912	0	1638	- 1
Fatehpur ...	April 4. 6	57	- 2	2496	1	917	+ 5	1637	2
Kálsi ...	\% 9.11	61	6	2493	4	915	3	1639	\bigcirc
Rájpur	" 18-20	58	3	2494	3	916	4	1637	-2
Dehra Dán	$\left.\begin{array}{ll} \text { March } & 29.30 \\ \text { April } & 23.28 \end{array}\right\} \ldots$	55	\bigcirc	2497	0	915	3	1638	1
Mean	55	...	2497	\cdots	912	...	1639	\cdots

It will be seen that after the change in Pendulum No. 137 took place, its length remained tolerably constant. There is some evidence of a tendency to return towards its former state, but the amount of the movement is not large enough to be taken into account.

Aceepting the mean of the two values at the top of the table to represent the former relations of the pendulums, and the means of all the values from December to April to represent their new relations, and assuming that Pendulum No. 137 alone changed its length and that it did so by an amount causing a decrement of x in its time of vibration, we have

Whence

$$
\begin{aligned}
& \frac{3 x}{4}=(80-55) ; \frac{x}{4}=(2497-2488) \text { or }(915-912) \text { or }(1653-1639) \\
& x=33 \text { or } 36 \text { or } 12 \text { or } 56 \\
& x=34
\end{aligned}
$$

and the mean
It will therefore be necessary to reduce the time of vibration of Pendulum No. 137 at Dehra Dún in November by $34^{2} \times 10^{-7}$, in order to produce the period which the pendulum would have had if its length had then been the same as it was during the remainder of the season.

Thus the times of vibration at Dehra Dún before and after the season's work become:-

> Table IV.-Times of Vibration at Dehra Dún.

Dato	137	138	189	140	Mean
Movember, 1906	0.5072564	0.5075005	0.5071599	0.5070866	0.5072508
March-April, 1907	0.5072560	0.5075002	0.5071590	0.5070867	0.5072505
Means	0.5072562	0.5075004	0.5071595	0.5070867	0.5072507

The value of g at each station has been computed from the differences from the above mean times of vibration at Dehra Dún, employing, as before, the value 979.063 for g at Dehra Dín, and the formula

$$
g=g_{0}-\frac{2 g_{0}\left(s-s_{0}\right)}{s_{0}}
$$

Table V.—Mean Times of Vibration and Deduced Values of g.

Station	137	188	139	140	Mean
Hardwar \quad e.	$\begin{array}{r} 0.5072405 \\ -157 \\ 979.124 \end{array}$	$\begin{array}{r} 0 \cdot 5074853 \\ -151 \\ 979 \cdot 121 \end{array}$	$\begin{array}{r} 0.5071444 \\ -151 \\ 979.121 \end{array}$	$\begin{array}{r} 0.5070708 \\ -\quad 159 \\ 979.124 \end{array}$	$\begin{array}{r} 0.5072353 \\ -\quad 154 \\ 979.122 \end{array}$
Roorkee \quad e.	$\begin{array}{r} 0.5072390 \\ -172 \\ 979.129 \end{array}$	$\begin{array}{r} 0.50748,32 \\ -\quad 172 \\ 979.129 \end{array}$	$\begin{array}{r} 0.5071423 \\ -172 \\ 979.129 \end{array}$	$\begin{array}{r} 0.5070695 \\ -\quad 172 \\ 979.129 \end{array}$	$\begin{array}{r} 0.5072335 \\ -172 \\ 979.129 \end{array}$
Nojli \quad e.	$\begin{array}{r} 0.50723+9 \\ -213 \\ 979.145 \end{array}$	$\begin{array}{r} 0.5074798 \\ -206 \\ 979.142 \end{array}$	$\begin{array}{r} 0.5071392 \\ -\quad 203 \\ 979.141 \end{array}$	$\begin{array}{r} 0 \cdot 5070658 \\ -209 \\ 979.144 \end{array}$	$\begin{array}{r} 0.5072299 \\ -208 \\ 979 \cdot 143 \end{array}$
Kaliana $\quad 8$.	$\begin{array}{r} 0.5072321 \\ -\quad 241 \\ 979.156 \end{array}$	$\begin{array}{r} 0.5074770 \\ -234 \\ 979.153 \end{array}$	$\begin{array}{r} 0.5071361 \\ -\quad 234 \\ 979.153 \end{array}$	$\begin{array}{r} 0 \cdot 50 j 0629 \\ -\quad 238 \\ 979{ }^{\circ} 55 \end{array}$	$\begin{array}{r} 0.5072270 \\ -\quad 237 \\ 979.154 \end{array}$
Meerut	$\begin{array}{r} 0.5072 .328 \\ -\quad 234 \\ 979.153 \end{array}$	$\begin{array}{r} 0.5074774 \\ -\quad 230 \\ 979.152 \end{array}$	$\begin{array}{r} 0.5071369 \\ -226 \\ 979.150 \end{array}$	$\begin{array}{r} 0.5070642 \\ -\quad 225 \\ 979.150 \end{array}$	$\begin{array}{r} 0.5072278 \\ -\quad 229 \\ 979.151 \end{array}$
Geaupur \quad g.	$\begin{array}{r} 0.5072402 \\ -160 \\ 979.125 \end{array}$	$\begin{array}{r} 0.5074844 \\ -160 \\ 979.125 \end{array}$	$\begin{array}{r} 0.50714 .32 \\ -163 \\ 979.126 \end{array}$	$\begin{array}{r} 0.5070706 \\ \hline \mathbf{1 6 1} \\ 979.125 \end{array}$	$\begin{array}{r} 0.5072346 \\ -\quad 161 \\ 979.125 \end{array}$
Mohan \quad e.	$\begin{array}{r} 0.5072445 \\ -117 \\ 979 \cdot 108 \end{array}$	$\begin{array}{r} 0.5074887 \\ -117 \\ 979 \cdot 108 \end{array}$	$\begin{array}{r} 0.5071474 \\ -121 \\ 979.110 \end{array}$	$\begin{array}{r} 0.50 \% 0749 \\ -118 \\ 979.109 \end{array}$	$\begin{array}{r} 0.5072389 \\ -118 \\ 979 \cdot 109 \end{array}$
Asarori \quad g.	$\begin{array}{r} 0.5072573 \\ +\quad 11 \\ 979.059 \end{array}$	$\begin{array}{r} 0.5075013 \\ +\quad 9 \\ 979.060 \end{array}$	$\begin{array}{r} 0.5071605 \\ +\quad 10 \\ 979.059 \end{array}$	$\begin{array}{r} 0.5070879 \\ +\quad 12 \\ 979.058 \end{array}$	$\begin{array}{r} 0.5072517 \\ +\quad 10 \\ 979.059 \end{array}$
Fatehpur \quad 8.	$\begin{array}{r} 0.5072347 \\ -215 \\ 979.146 \end{array}$	$\begin{array}{r} 0.5074786 \\ -218 \\ 979.147 \end{array}$	$\begin{array}{r} 0.5071373 \\ -\quad 222 \\ 979.149 \end{array}$	$\begin{array}{r} 0.5070653 \\ -214 \\ 979.146 \end{array}$	$\begin{array}{r} 0.5072290 \\ -\quad 217 \\ 979.147 \end{array}$
Kálsi \quad e.	$\begin{array}{r} 0.5072391 \\ -\quad 171 \\ 979.129 \end{array}$	$\begin{array}{r} 0.5074823 \\ -\quad 18 \mathrm{I} \\ 979 \cdot 133 \end{array}$	$\begin{array}{r} 0.5071415 \\ -180 \\ 979.132 \end{array}$	$\begin{array}{r} 0.5070691 \\ -176 \\ 979.131 \end{array}$	$\begin{array}{r} 0.5072330 \\ -177 \\ 979.131 \end{array}$
Rajpur \quad e.	$\begin{array}{r} 0.5072722 \\ +\quad 160 \\ 979.001 \end{array}$	$\begin{array}{r} 0.5075158 \\ +\quad 154 \\ .979 .004 \end{array}$	$\begin{array}{r} 0.5071748 \\ +\quad 153 \\ 979.004 \\ \hline \end{array}$	$\begin{array}{r} 0.5071027 \\ +160 \\ 979.001 \end{array}$	$\begin{array}{r} 0 \cdot 5072664 \\ +\quad 157 \\ 979.002 \end{array}$

The Orographical Corrections.

The possible effect of the Siwalik and Himalayan ranges has had to be considered at all the stations of this season, with the exception of Kaliána, Meerut and Gesupur.

It was clear that the effect at Nojli and Roorkee would be small, probably inappreciable, so I examined them first.

Orographical Correction at Nojli.

Height 879 feet.

At Nojli the Siwáliks may be looked upon as occupying a quarter-zone of which the inner radius is 24 miles, the outer 32 miles, and the height 2500 feet. The Himalayas may be considered to consist of a mass 6000 feet high subtending an angle of 125° at the station, and extending from 45 miles to an indefinite distance.

Thus the "effect," usiug this word in the same way as in Chapter II, of the two rauges is

$$
\left\{\frac{1}{4} \cdot \frac{1600^{2}}{2}\left(\frac{1}{24}-\frac{1}{32}\right)+\frac{125}{360} \cdot \frac{5100^{2}}{2}\left(\frac{1}{45}\right)\right\} \times 0 \cdot 0001894=19 \cdot 6 .
$$

The orographical correction is therefore

$$
19.6 \times 000035=0.00069
$$

Orographical Correction at Roorkee.

Height 867 feet.

Within the $\mathbf{3 5}$-mile radius the hills, partly Siwálik and partly Himalayan, may be considered to consist of a wedge-shaped block 3000 feet high, subtending an angle of 36° at the pendulum station, and bounded by circles of 26 and 35 miles radii.

Beyond the 35 -mile radius the Himalayas may be equated to a mass 6000 feet high occupying 130° of a zone of which the inner radius is 40 miles and the outer of indefinitely great length.

Thus the effect is

$$
\left\{\frac{36}{360} \times \frac{2100^{3}}{2} \times\left(\frac{1}{26}-\frac{1}{35}\right)+\frac{130}{360} \times \frac{5100^{2}}{2} \times \frac{1}{40}\right\} \times 0.0001894=22 \cdot 6 .
$$

The orographical correction is therefore

$$
22.6 \times 0.000035=0.00079
$$

The other stations require more careful treatment as considerable inequalities lie within the 35 -mile radius in every case. The analysis is shewn in the following tables:-

Table VI.-Orographical Correction at Hardwdr.

$$
\text { Height } 949 \text { feet. }
$$

(The inequalities within 1 mile of the station may be disregarded.)

No. of Zone	1	2	3	4	5	6	7
Inner radius Outer radius	1 mile 2 miles	$\begin{aligned} & 2 \text { miles } \\ & \mathbf{3} " \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{array}{cc} 4 & \text { miles } \\ 5 & " \end{array}$	$\begin{gathered} 5 \text { miles } \\ 7 \text { " } \end{gathered}$	$\begin{aligned} & 7 \text { miles } \\ & 10 \% \end{aligned}$	$\begin{aligned} & 10 \text { miles } \\ & 15 \quad " \end{aligned}$
Height	Irraction	Fraction	Fraction	Praction	Fraction	Fraction	Praction
feet 950	0.65	$0 \cdot 60$	$0 \cdot 54$	0.49	$0 \cdot 53$	$0 \cdot 54$	$0 \cdot 50$
1250	- 27	$\cdot 24$	$\cdot 33$	$\cdot 31$	$\cdot 35$	$\cdot 31$	$\cdot 33$
1750	- 08	$\cdot 14$	${ }^{13}$	$\cdot 13$	-07	- 09	-06
2250		- 02		'07	$\cdot 05$	- 06	- 10
2750							- 06
3250							$\cdot 03$
3750							-01
4250							- 01
Effect	$3 \cdot 6$	$2 \cdot 3$	0.9	1'1	0.9	0.8	$2 \cdot 5$
No. of Zone		8		9		10	
Inner radius Outer radius		miles "		$20 \text { miles }$		$\begin{aligned} & 25 \mathrm{~m} \\ & 35 \end{aligned}$	
Height		ction		Fraction		Fract	
foet 950		48		0.48		0.4	
1500		23		113		-09	
2500		-05		- 09		$\cdot 10$	
3000		- 15		$\cdot 12$		$\cdot 1$	
5000		-09		$\cdot 18$		$\cdot 1$	
7000						$\cdot 0$	
8500						\bullet	
Effect		$\cdot 7$		$3 \cdot 5$		$5 \cdot 8$	

Total effect of zones within 35 -mile radius $=25 \cdot 1$
Orogzaphical correction $=25 \cdot 1 \times \cdot 000035=0 \cdot 00088$

The regions lying beyond the 35 -mile radius may be classified as follows:-
Azimuth
(from S. by W.)

0 to 130						
130	to	180	\ldots			5000
180	",	230	\ldots	7000
230	"	270	5000
270	"	300	3000
300	,	360	900

The resulting orographical correction is

- 0.00092

Hence the total orographical correction is $0.0009+0.0009$

$$
=0.0018
$$

Mohan.

The immediate surroundings may be taken into account by considering that the station is on the vertex of a cone, the base of which has a radius of \ddagger mile, and the sides a slope of 1 in 6 .

The orographical correction is the difference between the attraction of this cone and that of a cylinder of equal height on the same base.

The attraction of the cylinder $=k\left(h+r-\sqrt{r^{2}+h^{2}}\right)$
The attraction of the cone $=k\left(h-\frac{h^{2}}{\sqrt{r^{2}+h^{2}}}\right)$
Difference $=k r\left(1-\frac{r}{\sqrt{r^{2}+h^{2}}}\right)$
Here $\quad h=\frac{r}{6} ; r=1320$ feet ; $k=0.000035$
Therefore the difference of attractions

$$
\begin{gathered}
=1320(1-0.9864) \times 0.000035 \\
=0.00063
\end{gathered}
$$

Table VII.-Orographical Correction at Mohan.
Height 1660 feet.

No. of Zone	1	2	No. of Zone	3	4	5	6	7
Inner Radius Outer Radius	$\begin{aligned} & 1320 \text { feet } \\ & 2640 \text {," } \end{aligned}$	2640 feet 5280	Inner Radius Outer Radius	1 mile 2 miles	$\begin{aligned} & 2 \text { miles } \\ & \mathbf{3} \text { " } \end{aligned}$	$\begin{aligned} & 3 \text { miles } \\ & 5 \mathrm{n} \end{aligned}$	$\begin{aligned} & \text { 5. miles } \\ & 7 \end{aligned}$	$\begin{gathered} 7 \text { miles } \\ 10 \end{gathered}$
Height	Fraction	Braction	Height	Fraction	Fraction	Fraction	Fraction	Fraction
feet 1400	0.02	$0 \cdot 12$	feet 900			0.22	$0 \cdot 33$	$0 \cdot 37$
1560	$\cdot 46$	$\cdot 40$	1250	0.33	0.40	$\cdot 16$	$\cdot 11$	- 08
1800	$\cdot 37$	- 29	1500	$\cdot 25$	$\cdot 09$	- 08	$\cdot 04$	$\cdot 22$
2100	${ }^{15}$	- 19	2250	$\cdot 23$	$\cdot 39$	$\cdot 27$	$\cdot 33$	$\cdot 26$
			2700	$\cdot 19$	$\cdot 12$	$\cdot 37$	$\cdot 19$	-07
Effect	$7 \cdot 5$	5*2	Effect	$16 \cdot 5$	$5 \cdot 3$	$6 \cdot 8$	$2 \cdot 9$	1.6

Table VII.-Orographical Correction at Mohan-(Continued).

No. of Zone	8	9	10	11
Inner Radius Outer Radius	$\begin{aligned} & 10 \text { miles } \\ & 15 \% \end{aligned}$	$\begin{aligned} & 15 \text { miles } \\ & 20 \mathrm{\#} \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 \text { " } \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 35 \text { " } \end{aligned}$
Height	Fraction	Fraction	Braction	Fraction
feet 900	$0 \cdot 39$	0.42	$0 \cdot 45$	0.44
1660	$\cdot 38$	$\cdot 29$	$\cdot 27$	$\cdot 13$
2500	$\cdot 29$	- 06		
8000		$\cdot 17$	-09	$\cdot 13$
5000		$\cdot 05$	$\cdot 11$	$\cdot 16$
7000		$\cdot 01$	- 08	$\cdot 12$
8000				$\cdot 02$
Eftect	$1 \cdot 3$	$2 \cdot 3$	$3 \cdot 7$	7'1

Total effect of zones within 35 -mile radius $\quad=60 \cdot 2$
Orographical correction $=60.2 \times 0.000035=0.00211$
The masses lying beyond the $\mathbf{3 5}$-mile radius may be classified as follows :Azimuth
(From S. by W.) Mean Height

						feet
0	to		\cdots	\ldots		900
130	"	190	\ldots	5000
190	"	250	\ldots	...		7000
250	"	280	5000
280	,	305		3000
305	,	360	...	-."	...	900

The resulting orographical correction is

$$
0 \cdot 00075
$$

Hence the total orographical correction is

$$
\begin{aligned}
0.00063 & +0.00211+0.00075 \\
& =0.00349
\end{aligned}
$$

Table VIII.-Orographical Correction at Asarori.
Height 2467 feet.

Total effect of zones within 35 -mile radius $=51 \cdot 3$
Orographical correction $=51.3 \times 0.000035=0.0018$

The outer regions may be divided up in the same way as in the case of Mohan, but the height of the station being greater by 800 feet the resulting correction is slightly different; its value is

$$
0.0006
$$

Hence total orographical correction is $\quad 0.0018+0.0006$

$$
=0.0024 .
$$

Table IX.—Orographical Correction at Fatehpur.
Height 1434 feet.
(Up to $\mathbf{3}$ miles from the station the inequalities are not large enough to be taken into account.)

No. of Zone	1	2	3	No. of Zone	4	5	6	7
Inner Radius Outer liadius	$\begin{aligned} & 8 \text { miles } \\ & 5 \# \# \end{aligned}$	$\begin{aligned} & 5 \text { miles } \\ & 7 \end{aligned}$	$\begin{gathered} 7 \text { miles } \\ 10 \mathrm{n} \end{gathered}$	Inner Radius Outer Radius	10 miles 15 "	$\begin{aligned} & 15 \text { miles } \\ & 20 \end{aligned}$	20 miles 25	$\begin{aligned} & 25 \text { miles } \\ & 35 \ldots \end{aligned}$
Height	Fraction	Fraction	Fraction	Height	Fraction	Fraction	Fraction	Fraction
feet 1300	0.14	0.07	0.17	feet 900	0.07	0.24	$0 \cdot 33$	$0 \cdot 32$
1700	-65	$\cdot 65$	$\cdot 36$	1600	$\cdot 34$	$\cdot 13$	- 10	${ }^{15}$
2250	$\cdot 13$	$\cdot 15$	$\cdot 16$	2500	$\cdot 11$	-09	$\cdot 04$	- 02
2500		-0.3	$\cdot 14$	3000	$\cdot 25$	$\cdot 17$	$\cdot 14$	$\cdot 09$
2700	$\cdot 08$	$\cdot 10$	-08	5000	15	$\cdot 16$	$\cdot 17$	$\cdot 09$
3500			-05	7000	- 08	$\cdot 19$	$\cdot 16$	$\cdot 23$
4500			-03	9000		$\cdot 02$	-06	$\cdot 10$
5500			$\cdot 01$					
Effect	$3 \cdot 6$	1.8	$4 \cdot 6$	Lffect	$18 \cdot 0$	$15 \cdot 8$	10.6	'5'1

'Total effect of zones within 35 -mile radius $=67.5$
Orographical correction $=67.5 \times 0.000035=0.0024$
The outer regions may be estimated as follows :-
Azimuth
(From S. by W.)
Height
feet

The resulting orographical correction is

$$
0.0009
$$

Hence total orographical correction is $\quad 0.0024+0.0009$

$$
=0.0033
$$

Kalsi.

The station is situated about 30 yards from the outer edge of a shelf of land below which flows the Jumna and above which stands the outer range of the Himalayas.

An approximation to the masses within a radius of $\frac{1}{4}$ mile may be made by assuming that the station is 100 feet from the edge of a cliff 100 feet high, and that if circles be described with radii of 100 feet and $\frac{1}{2}$ mile respectively, half the land enclosed between them will be at the same level as the station and half 100 feet below it.

The orographical correction on account of this half zone is $0 \cdot 00065$

From $\frac{1}{4}$ mile to 35 miles the analysis has been made in the usual way.
Table X.—Orographical Correction at Kálsi.
Height 1684 feet.

No. of Zone	1	No. of Zone	2	3	4	5
Inner Radius Outer Radius	1 mile 1%	- Inner Radius Outer Radius	1 mile 3 miles	$\begin{aligned} & 3 \text { miles } \\ & 5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 5 \text { miles } \\ & 7 \Longrightarrow " \end{aligned}$	$\begin{aligned} & 7 \text { miles } \\ & 10 \text { " } \end{aligned}$
Height	Fraction	Height	Fraction	Eraction	Fraction	Braction
feet 1584	$0 \cdot 67$	feet 1550	0.27	0.22	0.24	0.26
1840	$\cdot 17$	1850	$\cdot 23$	-09	- 10	$\bigcirc 7$
2500	$\cdot 16$	2500	$\cdot 34$	$\cdot 36$	$\cdot 15$	$\cdot 13$
		3500	-10	$\cdot 21$	$\cdot 15$	$\cdot 12$
		4500	- 06	$\cdot 16$	$\cdot 17$	$\cdot 18$
		5550		-05	$\cdot 14$	$\cdot 13$
		6500		- 01	- 05	- 10
		7200				- 01
Effect	29.1	Effect	$64 \cdot 6$	$38 \cdot 5$	$27 \cdot 5$	$26 \cdot 0$

Table X.-Orographical Correction at Kalsi-(Continued).

No. of Zone	6	7	8	9
Inner Radius Outer Radius	$\begin{aligned} & 10 \text { miles } \\ & 15 \% \end{aligned}$	$15 \text { milos }$ 20	$\begin{aligned} & 20 \text { miles } \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 35 \text { " } \end{aligned}$
Height	Fraction	Praction	Fraction	Fraction
feet 900		$0 \cdot 02$	0.17	$0 \cdot 30$
1400	0.26	$\cdot 27$	$\cdot 12$	$\cdot 12$
2500	'11	$\cdot 14$	-08	-02
8000	$\cdot 19$	$\cdot 15$	$\cdot 14$	-08
5000	$\cdot 26$	$\cdot 12$	$\cdot 17$	$\cdot 56$
7000	${ }^{1} 7$	$\cdot 21$	$\cdot 24$	$\cdot 21$
9000	$\cdot 61$	$\cdot 09$	-08	$\cdot 10$
10500				- 01
Effect	$26 \cdot 7$	19.9	12.6	14.7

Total effect of zones within 35 -mile radius $\ldots=259-6$
Orographical correction $=259 \cdot 6 \times 0 \cdot 00003$ ӭ $=0 \cdot 00909$.
The regions outside the 35-mile radius may be classified as follows :-

Azimuth
(From S. by W.)

| 0 | 0 | | | | feet | |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| 0 | to | 125 | \ldots | \ldots | \ldots | 900 |
| 125 | \prime | 195 | \ldots | \ldots | \ldots | 5000 |
| 195 | , | 255 | \ldots | \ldots | \ldots | 7000 |
| 255 | , | 295 | \ldots | \ldots | \ldots | 5000 |
| 295 | , | 340 | \ldots | \ldots | \ldots | 3000 |
| 340 | , | 360 | \ldots | \ldots | \ldots | 900 |

The resulting orographical correction is
0.00081

Hence the total orographical correction is $0.00065+0.00909+0.00081$

$$
=0 \cdot 01055
$$

Table XI.-Orographical Correction at Rájpur. Height 3321 feet.

(U p to a radius of 500 feet the inequalities may be disregarded).

Total effect of zones within 35 -mile radius $=257 \cdot 2$
Orographical correction $=0.0257 \cdot 2 \times 0.000035$ $=0.00900$.

The outer regions may be classified thus :-
Azimuth
(From S. by W.)

0	to	120
120	\prime	180
180	$"$	250
250	"	290
290	,	320
320	"	360

		Height feet
	\ldots	900
\ldots	\ldots	5000
\ldots	\ldots	9000
\ldots	\ldots	4000
\ldots	\ldots	3000
\ldots	\ldots	900

The resulting orographical correction is 0.00088
Hence the total orographical correction is $\quad 0.00900+0.00088$

$$
=0.00988
$$

Dehra Din.

The maps of the Dún having all been contoured the opportunity of recomputing the orographical correction for Dehra Dún was favourable, and this has thercfore been done. The value which has been used in Chapter II depends, up to a radius of 30 miles, on the calculation made in Vol. V. Op. G. T. S. p. [177], though for the outer regions I substituted my own figures. It is desirable that the orographical correction of all the stations in and about the Dún be based on the same estimates of height, so that they may be at least cousistent, and, as there was so large a divergence between my heights and those of Vol. V in the outer zones, it seemed probable that there might be some discrepancy in the iuner ones also.

Table XII.—Orographical Correction at Dehra Dün.
Height 2241 feet.
(Up to a radius of 3 miles the inequalities may be disregarded).

No. of Zone	1	2	3	No. of Zone	4	5	6	7
Inner lरadius Outer Radius	3 miles 5%	5 7 7	7 miles 10	Inner Radius Uuter Radius	$10 \text { miles }$ $15 \quad,$	$\begin{aligned} & 15 \text { miles } \\ & 20 \ldots \end{aligned}$	$\begin{aligned} & 20 \text { miles } \\ & 25 \mathrm{n} \end{aligned}$	$\begin{aligned} & 25 \text { miles } \\ & 35 \text { " } \end{aligned}$
Height	Fraction	Fraction	Fraction	Height	Fraction	Fraction	Fraotion	Fraction
foet 1800	$0 \cdot 20$	$0 \cdot 36$	0.27	feet 900		$0 \cdot 12$	0.23	$0 \cdot 31$
2100	$\cdot 37$	$\cdot 18$	$\cdot 10$	1500	$0 \cdot 99$	33	$\cdot 21$	'14
2350	- 16	$\cdot 10$	$\cdot 11$	2500	$\cdot 20$	- 10	-05	
2900	$\cdot 24$	-28	-!	3000	$\cdot 13$	-06	$\cdot 09$	$\cdot 13$
3600	-03	$\cdot 19$	$\cdot 11$	5000	$\cdot 18$	${ }^{17}$	$\cdot 27$	$\cdot 17$
4500		$\cdot 06$	$\cdot 11$	7000	$\cdot 17$	$\cdot 18$	$\cdot 13$	-15
5500		- 0	$\cdot 10$	8500	-03	-05	-02	-07
6500			-08					
7200			$\cdot 01$					
Effect	2.7	f'5	151	Effect	21.1	$12 \cdot 7$	6.1	$9 \cdot 3$

Total effect of zones within 35 -mile radius $=71 \cdot 5$
Orographical correction $=0.71 .5 \times 0.000035$
$=0.00250$

The regions outside the 35 -mile radius may be analysed in the same way as in Chapter II. There the inner radius was 30 miles, here it is 35 miles, the value of the correction there obtained must consequently be multiplied by $\frac{30}{35}$. It becomes therefore
0.00111

Hence the total orographical correction is
The value adopted in Chapter II was
0.0036
0.0041

The two values thus agree satisfactorily.
Table XIII.-Abstract of Final Results.

Station		Latitude	Height	Observed g	$9 \frac{2 h}{\bar{L}}$	$g \frac{3}{4} \frac{h}{R}$	0	Value at sea level $90^{\prime \prime}$	γ_{0}	$g_{0}{ }^{\prime \prime}-\gamma_{0}$
Hardwar	...	$\left\|\begin{array}{ccc} \circ & 1 & 1 \\ 29 & 56 & 29 \end{array}\right\|$	feet 949	979 122	+0.089	-0.033	+0.002	979 ${ }^{180}$	979 294	-0.114
Roorkee	...	295220	867	979 1 129	+0.08I	-0.030	+0.001	979 - 181	979 $\cdot 288$	-0.107
Nojli	...	295328	879	979 1 143	+0.082	-0.031	+0.001	979'195	979 290	-0.095
Kaliána	...	293055	8 r 0	$979 \cdot 154$	+0.076	-0.028	$\bigcirc \cdot 0$	979•202	979 260	-0.058
Meerut	...	$29 \quad 0 \quad 36$	734	979 151	+0.069	-0.026	$0 \cdot 00$	979•194	979 ${ }^{\text {22I }}$	-0.027
Gesupur	...	28332.	691	979 125	+0.065	-0.024	$0 \cdot 0$	979•166	979•186	-0.020
Mohan	...	301053	1660	979•109	+0.155	-0.058	+0.003	979•209	979 - 313	-0.104
Asarori		301425	2467	979.059	+0.231	-0.087	+0.002	979 205	979 317	-0.112
Fatehpur	...	302553	1434	979 147	$+0 \cdot 132$	-0.049	+0.003	979 - 233	979 -333	-0.100
Kálsi	..	3031	1684	979 131	+0.158	-0.059	+0.011	979.241	979 339	-0.098
Rajpur	...	302412	332 I	$979 * 002$	+0.311	-0.117	+0.010	979•206	979 330	-0.124

CHAPTER VI.

The Accuracy of the observations.

There are two convenient ways of determining the probable error of the reduced time of vibration of a pendulum. These have already beeu mentioned in Chapter I.

I may here repeat that if ρ be the probable error of one complete detcrmination of the time of vibration of any pendulum, that is to say, of the result of a night and a day observation preceded and followed by time determinations; and if for any series of observations the differences between the individual pendulums and the mean pendulum, the mean differences, and the residuals be formed as in Table III of Chapter III; and if all the residuals of the series be squared and summed, then

$$
\rho=0.6745 \sqrt{\frac{[v \vee]}{3(n-1)}}
$$

where n is the number of sets of observations.
Also since there are four pendulums, the probable error of one determination of the time of vibration of the mean pendulum is

$$
\rho_{0}=\frac{\rho}{2}
$$

Secondly if there are two or more sets of observations at each station, and if the differences between the several values of the time of vibration of the mean pendulum and the stationmeans be called v^{\prime}, then, if there are n stations and m sets of observations in all, the probable error of one determination of the time of vibration of the mean pendulum is

$$
\mu_{0}=0.6745 \sqrt{\frac{\left[\mathrm{v}^{\prime} \mathrm{v}^{\prime}\right]}{m-n}}
$$

It will be seen that the same words are used to define ρ_{0} and μ_{0} but they are not identical quantities : I shall call the two ways of computing the above probable error A and B respectively and the results ρ_{o} and μ_{0}

In Chapter II the quantities necessary for computing ρ_{0} were not given, they are shewn in the following table:-

Table I.—Differences between Individual Pendulums and Wean Pendulumi.

Station	Date	187	∇	138	V	139	∇	140	∇
Dehra Den	1904 Jan. $25-26$ " 26.27 Feb. $29-30$ B. 4 " 4.5 " 5.6	$\begin{aligned} & 72 \\ & 76 \\ & 73 \\ & 69 \\ & 74 \\ & 68 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 5 \\ & 6 \\ & 0 \end{aligned}$						
				2485 2484	10	898 895	${ }^{7}$	1658 1663	1
				2493	2	893	2	1663	6
				2491	4	903	2	1656	1
				2491	4	904	,	1660	3
				$2+89$		903	2	1652	5
Madres	$\begin{array}{cc} \text { Mar. } & \text { 3. } 4 \\ " 1 & 4.5 \\ " 1 & 6.7 \\ " & 7.8 \end{array}$	41	27	2508	13	905	-	1645	
		80	12	2483	12	907	2	165^{6}	1
		45	${ }^{23}$	2507	12	913	8	1637	20
				2493	2	911		1644	13
Colaba	$\begin{array}{rr} \text { Mar. } & 16 \cdot 17 \\ " & 17.18 \\ " & 20.21 \\ " & \pm 1.22 \end{array}$	68		2495	\bigcirc	903	2	1661	
		74	6	$2+96$	1	904	1	1666	9
		64	4	2505	10	905	0	1664	7
		72	4	2500	5	912	7	1660	
Mussooree (Dwnseverick) ...	$\begin{array}{rl} \mathbf{\Delta p} . & 22 \cdot 23 \\ " & 23 \cdot 24 \\ " & 25 \cdot 26 \\ " & 26 \cdot 27 \end{array}$	64		2501	6	909		16.3	
		70	2	2497	2	005	-	1661	4
		66	2	2496	1	907	2	1654	3
			\bigcirc	2495	-	909	4	1653	4
Mussoores (Camel's Back)	$\begin{array}{cc}\text { May } & 16.17 \\ \text { " } & 17.18 \\ \text { " } & 18.19\end{array}$						8		
		81	13	2500	5	919	14	1663	6
		50	18	2498	3	896	9	1650	7
Dehre Dún	$\begin{array}{cr}\text { May } & 27-28 \\ \text { \# } & 28-29 \\ \text { June } & 2.3 \\ " \prime & 3.4 \\ " & 4.5\end{array}$								
		$8{ }^{8}$	16	'2491	4	904	1	1670	13
		58	10	2504	9	906	1	1656	1
		68	-	2494	1	901	4	1660	3
		73	5	2497	2	909	4	1660	3
Mean		68	...	2495	\cdots	905	\cdots	1657	\cdots

The sums of the squares of the residuals are for the different pendulums :-

Pendulum	137	138	139	140
$[\nabla \nabla]$	2611	1082	747	1372

The number of sets is 26 .
Heuce

$$
\begin{aligned}
\rho & =0.6745 \sqrt{\frac{5812}{3(25)}} \\
& = \pm 5 \cdot 9 \\
\rho_{0}= & \pm 3 \cdot 0
\end{aligned}
$$

Employing method B we have
Table II.

station	No. of Sets	- ${ }^{\prime}$
Dehra Dún ...	6	47
Madras ...	4	117
Colaba ...	4	167
Mussooree (Dunseverick) ...	4	78
Mussooree (C'amel's Back)...	3	233
Dehra Dún	5	315
Total ..	26	957

The number of stations is 6 .

176

Hence

$$
\begin{aligned}
\mu_{0} & =0.6745 \sqrt{\frac{957}{26-6}} \\
& = \pm 4 \cdot 7 .
\end{aligned}
$$

The number of stations is small and it would be rash to generalise from the values of ρ_{o} and μ_{0}^{\prime} derived from them. I therefore go on to examine the results of the next season's work.

The Season 1904-05.

In Table III of Chapter III the quantities necessary for computing ρ_{0} are given.
There are 48 sets of observations and the following values of [wv] are found by squaring and summing the quantities v .

Pendulum	137	138	139	140
[v̄]	1277	2037	$\mathbf{8 8 1 2}$	4820

Hence
and

$$
\begin{aligned}
\rho & =0.6745 \sqrt{\frac{11946}{3 \times 47}} \\
& = \pm 6.1 \\
\rho_{0} & = \pm 3.1
\end{aligned}
$$

In the computation of μ_{0} by method B we have the following series of values :-
Table III.

Station	No. Sets	[$\left.\mathrm{r}^{\prime} \mathrm{r}^{\prime}\right]$
Dehra Dún (Room)	4	155
C"tar (Tent)	2	85
Cuttack	3	35
Chatra	3	165
Kisnapur ...	2	0
Jalpaigurí	3	163
Kesarbari	(1)	817
Ramchandpur	3	817
Siliguri	4	262
Darjeeling	3	6
Kurseong	4	157
Sandakphu	8	5
Dehra Dún (Room)	3 3	45 17
Dehra Dún (Tent)	3	17
Totals ...	40	1912

The number of stations is 13 .
Hence

$$
\begin{aligned}
\mu_{0} & =0.6745 \sqrt{\frac{1912}{40-13}} \\
& = \pm 5.7
\end{aligned}
$$

By method A we had $\quad \rho_{0}= \pm \mathbf{3} \cdot 1$

As in the case of the observations ending in June 1904, we have μ_{0} larger than ρ_{0}.
The difference shows that the cause of a large proportion of the total error does not affect the differences between the individual pendulums and the mean pendulum in any set, bat produces differences from set to set.

This cause is probably twofold, namely,
(1) Differences between the temperatures of the pendulums and the temperatures recorded by the thermometers,
(2) Variations of clock rate.

During the hours of observation when the temperature is being constantly watched and to some extent controlled, it is probable that the difference between the real temperature of each pendulum and that recorded by the thermometer is fairly constant, but the amount of this difference will depend on the conditions antecedent to the commencement of the observation, and these conditions will differ from day to day according to the state of the weather.

Also if the clock rate is constant during the hours of observation no discrepancy between the actual rate and the rate adopted for the period of 24 hours will affect the differences between the individual pendulums and the mean pendulum, but it might well occur, when the temperature is variable, that the mean of the actual rates during the night and day observations would differ to some extent from the 24 -hourly rate, and so produce discrepancies from set to set. Besides this the observed daily rates are no doubt burdened with a certain amount of error.

Both cause (1) and cause (2) should have had less influence at stations where suitable observing rooms were available than at those where the conditions were less favourable. To examine this I have computed the probable errors by both methods for the following stations of the season 1904-05:-Dehra Dún (Room), Jalpaiguri, Darjeeling, Kurseong, Sandakphu and Dehra Dún (Room).

The results are:-
By method A $\rho= \pm \mathbf{6 . 8}$
Whence $\quad . . \quad$... $\rho_{0}= \pm \mathbf{3 . 4}$
By method B $\mu_{0}= \pm \mathbf{4 . 2}$
The former results were respectively

$$
\rho_{0}= \pm 3 \cdot 1 \text { and } \mu_{0}= \pm 5 \cdot 7
$$

There is therefore a considerable diminution of the discrepancy, thongh it is clear that even in the rooms the causes discussed had a considerable effect.

If we call the probable error due to these causes r
And we have

$$
r=\sqrt{\mu_{0}{ }^{2}-\rho_{0}{ }^{2}}
$$

(1). For the observations of Chapter II ... $r= \pm 3 \cdot 6$
(2). For the observations of Chapter III
$\begin{array}{lll}\text { (a) when all the stations are included } & \ldots & r= \pm 4.8 \\ \begin{array}{llll}\text { (b) when only the stations with rooms } \\ \text { are included } & \ldots & \ldots & r= \pm 2.4\end{array}\end{array}$

The large values of \mathbf{v} at Madras and at the Camel's Back station Mussooree are to be chiefly attributed to want of experience on the part of the observer and to unsteady temperature.

The large values of the same quantity at Ramchandpur, and at Delra Dún in May 1905, and the very large value of [$\mathrm{v}^{\prime} \mathrm{v}^{\prime}$] at Ramchandpur, are worthy of attention.

With regard to Dehra Dún it is possible that these discordances were due to earth tremors caused by the after-shocks of the great Kangra Earthquake of April 4, 1905. Dehra Dín lies very near, in fact almost within the epifocal region* of that earthquake; its effects there were disastrous, and a great number of small after-shocks were no doubt taking place during the month of May. The absence of any notable irregularity during the observations in the tent (May 12th - 15th) does not prove that the discrepancies of 18th and 19th were not due to tremors, for there may accidentally have been a quiet period while the first series of observations was in progress.

At Ramchandpur the pendulums were swung in a hut built under a mango tree. This position was chosen for the sake of the protection from the sun that the tree afforded, but it has since occurred to me that the neighbourhood of a large tree is not a \&ood place. If there is any wind the ground round the tree must be subject to many vibrations communicated by the branches, through the trunk, to the roots. I have unfortuately no note as to whether there was or was not much wind during my stay at Ramchandpur.

The Season 1905-06.

Using the values of v in Table III of Chapter IV we have after squaring and summing,

Pendulum	137	138	139	140
$[\mathrm{vr}]$	1870	1005	1338	860

The total number of sets is 46 .

Hence	$\rho=0.6745 \sqrt{\frac{4573}{3 \times 45}}$	
		$= \pm 3.9$
and		$\rho_{0}= \pm 2.0$

Now taking the differences between the station-means and the means of the single sets we have

Table IT.

Station		No. of sets	[$r^{\prime} \mathrm{r}^{\prime}$]
Dehra Drún	3	114
Simla	3	218
Kálka	(1)	
Ludhigna ...	\cdots	4	27
Mián Mir	3	17
Ferozepore	3	17
Pathánkot	3	145
Montgomery	3	32
Dera Gházi Khan	.	3	146
Multán	8	162
Jacobabad ..	.	3	3
Sibi	\cdot	2	13
Mach	...	2	41
Quetta	...	3	26
Dehra Dún	...	4	27
Totals	...	42	988

[^15]The number of stations is 14.
Hence

$$
\begin{aligned}
\mu_{0} & =0.6745 \sqrt{\frac{988}{42-14}} \\
& = \pm 4.0
\end{aligned}
$$

As in the previous series of observations, μ_{0} is larger than ρ_{0}.
In the present case the quantity which has been called r has the value

$$
\pm 3 \cdot 5
$$

The Season 1906-07.

Proceeding as before, but omitting from consideration the observations made at the beginning of the season at Dehra Dún, on account of the change in Pendulum No. 137 that took place just after the observations there, we obtain for this season the following results :-

Pendulum	137	138	139	140
$[\mathrm{vv}]$	783	342	438	604

The total number of sets is 33 .
Hence
and

$$
\begin{aligned}
\rho & =0.6745 \sqrt{\frac{2167}{96}} \\
& = \pm 3.2 \\
\rho_{0} & = \pm 1.6
\end{aligned}
$$

Now using method B, we have

$$
\text { Table } V
$$

Station		No. of seta	[$\mathrm{v}^{\prime} \mathrm{v}^{\prime}$]
Dehra Dún	...	3	49
Hardwar	\cdots	3	5
Roorkee	...	4	27
Nojli	...	3	49
Kaliáa	..	4	23
Meerut	..	8	1
Gesupur	...	3	11
Mohan	...	2	8
Asarori	...	2	1
Fatehpur	...	2	18
Kálsi	...	2	18
Rajpur	...	2	1
Dehra Dán	...	3	9
Totals	...	36	220

The number of stations is $\mathbf{1 8}$.
Hence

$$
\begin{aligned}
\mu_{0} & =0.6745 \sqrt{\frac{220}{36-13}} \\
& = \pm 2.1
\end{aligned}
$$

The good accordance between the two values $\pm 2 \cdot 1$ and ± 1.6 shows that during this season the cause of discrepancies between sets has been to a large extent overcome. This may be safely attributed to the introduction of the thermometer in the dummy pendulum for measuring the temperature of the pendulums. There was no change in the clock nor in the instruments used in the time observations, and the rooms occupied were not superior to those of the season 1905-06; we may conclude therefore that of the two possible causes mentioned on p. 177, the first was the more potent.

The quantity r for this season

$$
\begin{aligned}
& =\sqrt{2 \cdot 1^{8}-1 \cdot 6^{3}} \\
& = \pm 1 \cdot 4
\end{aligned}
$$

The investigation of the errors has so far taken into consideration only the discrepancies between the observed values of the time of vibration at the several stations. When we come to consider the differences between these times and those observed at the Base station, Dehra Dún, there are other sources of error to be taken into account, for there are several errors which are constant throughout the whole of the observations at a station, but which differ from station to station. I enumerate some of them here.

1. Errors in the flexure correction.
2. Errors in the corrections of the thermometers.
3. Errors in the corrections of the barometer and hygrometer.
4. Error in the constant of the temperature correction.
5. Error in the constant of the density correction.
6. Errors due to changes in the lengths of the pendulums.

I shall discuss them seriatim.

1. The flexure correction.

An examination of the observed values of the flexure correction will show that the p.e. of the adopted mean seldom exceeds $\pm 0 \cdot 5$. I shall take its value to be $\pm 1 \cdot 0$. There seems no reason to suppose that the error of the determination is greater when the flexure is large than when it is small, at least within the moderate variations actually encountered. At some few stations where the flexure was unsteady, owing to the cement in the pillar not having hardened when the observations began, there will no doubt have been a greater liability to error, but these cases were rare and need not be considered further.

2. The correction to the thermometer readings.

All the thermometers used for determining the temperatures of the pendulums have had their corrections determined on three separate occasions at the National Physical Laboratory at Kew. On the first two occasions the readings were made to 0.05 of a degree centigrade, and on the third occasion to 0.02 . The determinations agree well with one another and I do not think that the difference of two corrected readings is likely to have a p.e. from this cause, of more than $\pm 0^{\circ} \cdot 02$. It is to be remarked that we are concerned with differences of temperature only, . not with absolute temperatures.

If the p.e. of the difference of temperature be $\pm 0^{\circ} 02$; that of the difference of the times of vibration will be

$$
\pm 0.02 \times 49= \pm 1.0
$$

3. The corrections to the barometer and hygrometer.

These may be entirely neglected. An error of 1 millimetre in the height of the barometer has no effect on the correction to the time of vibration, and errors in the hygrometer are of still less importance.

4. The constant of the temperature correction.

The value of this constant was determined both at Potsdam and at Kew : the results are given on p. 5 of this paper. The value which has been used for all the reductions is 49, and from the figures on p. 5 we may estimate that the p.e. of this value is not greater than $\pm 0 \cdot 2$. If \mathbf{C} be the difference between the average temperature of the pendulums at any station and the mean of the temperatures at Dehra Dún during the opening and closing sets of observations, the p.e. of the difference between the reduced times of vibration will be

$$
\pm 0.2 \times \mathrm{C} .
$$

The error will be different for each station; but it will be sufficient here to find its average value and its extreme value for each season.

In the season which ended in June 1904 the mean of the temperatures at Dehra Dún was $21^{\circ} \cdot 0$, the average of the temperatures at the other stations $20^{\circ} \cdot 8$, and the temperature which differed most from $21^{\circ} .0$ was that at Mussooree (Camel's Back), where it was $14^{\circ} \cdot()$.

And the greatest p.e. was $\pm 1 \cdot 4$.
In the season 1904-05 the mean of the temperatures at Dehra Dún was $22^{\circ} \cdot 7$, the average at the other stations $17^{\circ} \cdot 6$, and the lowest $8^{\circ} \cdot 3$ at Sandakphu.

Hence the average p.e. was ± 1.0
And the greatest p.e. was ± 2.9
For the season 1905-06 the figures were:-

At Dehra Dún				$23^{\circ} \cdot 5$
Average of field stations	\ldots	16.8	16.8	
Extreme	\ldots	\ldots	10.8	(At Simla)

$\begin{aligned} & \text { Hence the average p.e. was } \\ & \text { And the extreme p.e. was }\end{aligned} \pm \begin{aligned} & 1.3 \\ & 2.5\end{aligned}$
For the season 1906-07 the temperatures were:-

At Dehra Dún		$20^{\circ} \cdot 8$
Average of fields stations	...	18.4
Extreme		$15 \cdot 1$

Hence the average p. e. was ± 0.5
And the extreme p. e. was $\pm 1 \cdot 1$
For any ordinary station, then, a liberal estimate of the p.e. of the difference between the reduced times of vibration due to uncertainty in the temperature constant will be ± 1.0.
5. The constant of the density correction.

The value of this constant also was determined both at Kew and at Potsdam. The means of the two sets of values (vide p. 4) differ by 1.7 per cent. The Potsdam values have been used throughout, and from the probable errors given that of the mean is ± 1.8 or 0.3 per cent.

A reasonable assumption will be that the p.e. does not exceed $1 \cdot 0$ per cent.
On this accoant, then, the p. e. of the difference between the times of vibration at Dehra and at any other station is $\pm 5.95 \times$ (Density at Dehra-Density at Station).

The average density at Dehra is about 0.848 , and at ordinary stations in the plains of India it is about $0 \cdot 930$. The p. e. corresponding to this difference is

$$
\pm 0.5
$$

The lowest density so far met with was that at Sandakphu, namely 0.620.
The maximum p.e. therefore was ± 1.8
I have adopted ± 0.8 as the normal value of this probable error.
6. Changes in the lengths of the pendulums.

Minute changes of an accidental character such as would be occasioned by slight movements of the agates in their bearings, or by particles of dust or moisture adhering to the surface of the pendulums have been instrumental in forming the discrepancies whence ρ_{0} and μ_{0} have been computed and need not be further considered. Systematic changes of individual pendulums with reference to the others have also had their effect on ρ_{0}, and when considerable they have been allowed for, as in the case of Pendulum No. 140 during the season 1904-05, and of Pendulum No. 137 in November 1906, but such changes, as well as others affecting all the pendulums similarly, will prodace an uncertainty as to the proper value of the time of vibration at the Base station with which comparison should be made. If, for instance a change of x in the time of vibration took place between the opening and the closing observations, the question is, "When did the change take place?" If it was a slow progressive change then the quantity \boldsymbol{x} should be distributed evenly over the stations ; but if the change took place suddenly, say after the first field station, then that station should receive no correction and all the others should receive a correction of x.

The time of vibration at Dehra Dún has been taken to be the mean of the observed times before and after the field season*, and the discrepancies between these times afford a means of estimating the uncertainty arising from changes in the pendulums.

The times in question were:-

January and February 1904May and June1904	Time of vibration			Diff.
		$\stackrel{8}{0 \cdot 5072528}$		- 9
	...			
	2519	
November 1904 (Room)	2522	
May 1905 ,	2509	
November 1904 (Tent)	2504	
May 1905 ,	2502	
November 1905	2506	$+9$
April 1906	2515	$+9$
November 1906	2508	
April 1907	2505	

These differences do not depend wholly on changes in the pendulums and it is only possible to form an idea of the uncertainty due to this cause. If we treat each pair of values as if it consisted of two observations of the same thing, the difference being an accidental error, the average p. e. of the mean of a pair is

$$
\pm 2 \cdot 8
$$

I shall adopt ± 3.0 as the value of the p. e. due to changes in the pendulums, eacept in the season 1904-05 for which I shall assign ± 4.0.

[^16]It has been pointed out that the error represented by r will be in part due to errora in the determination of the clock rate. The amount of this error must therefore be examined.

In the following tables I give an example of the time observations at a station:-

Station Gesupur.

Table VI.—Dislevelment of Transit Axis.

Date			March 3rd	March 4th	March 5th
March 6th					
At Beginning	\ldots	\ldots	+3.7	$+3!3$	+2.5
At End	\ldots	\ldots	+4.3	+4.3	+5.0
Mean	\ldots	\ldots	\ldots	+4.0	+3.8

Table DII.—Deviation in Azimuth.

8tar	March 8rd	March 4th	March 5th	March 6th
- Ursae Minoris (8. P.)	West $13{ }^{\prime \prime}$	Weat $13^{\prime \prime} 7$	West 16.5	Weat $18{ }^{\prime \prime} 4$
δ Ursae Minoris (8. P.)	" 14.4	" 15.6	$17 \quad 17.2$	" 1912
51 (Hev.) Cephoi ...	" 150	" 19*1	" 20.3	- 22.2
Mean \quad... ...	" 14.3	1116.1	" $18 \cdot 0$	" 19×9

184
Table VIII.-Abstract of Corrected Times of Transit and Deduced Clock Rates at Gestupur.

The number of stars observed may be thought unnecessarily large but when the plan is followed of observing the same stars each night, a few passing clouds might render the whole programme useless uuless the observations extended over a considerable time.

The p.e. of the clock rate being about $\pm 0^{s} 01$, that of the reduced time of vibration will be

$$
\pm 59 \times 10^{-7} \times 0.01= \pm 0.06 \times 10^{-7}
$$

This value should be slightly increased on account of the p. e. of the level correction, any uncertainty in which affects the time of transit of all the stars in the same way. No increase is necessary on account of uncertainty in the azimuthal deviation, for the programme is always divided equally between stars north and south of the zenith so that a cancelment of errors is brought about.

The value $\pm 0.8 \times 10^{-7}$ may be assigned to the total p.e. on account of errors in the determination of the clock rate. Thus in the season 1906-07 the quantity r is almost wholly accounted for.

The p.e. just faund is not to be looked upon as a new source of uncertainty in the observed time of vibration, for it enters into μ_{0} and has therefore been already taken into account.

Having now arrived at values for the various errors I shall build up the probable error of the difference between the times of vibration at the Base and at a field station. This total p. e. I shall call E, taking as my unit the seventh decimal place of a second.

The p.e. represented by μ_{0} appertains to the time of vibration of the mean pendulum derived from one set of observations : if there were during any season on an average n sets at each station, then the quantity to be used for that season, which I shall call μ_{n}, is

$$
\frac{\mu_{0}}{\sqrt{n}}
$$

In the early part of 1904 there were as a rale 4 sets of observations at each station; the value of μ_{0} was ± 4.7.

Hence

$$
\mu_{g}= \pm 2 \cdot 4
$$

The time of vibration at a field station is therefore burdened with the following errors :-

1. μ
$\cdots \pm 2 \cdot 4$
2. In the flexure correction
$\cdots \pm 1 \cdot 0$
3. In the thermometer readings
4. Iu the temperature constant
... ± 1.0
5. In the density constant

Sum of squares	$\pm$$9 \cdot 4$ Total p. e.
$\mathbf{3 . 1}$	

The time of vibration at Dehra Dún, with which comparison has to be made, is the mean of two separate series of observations aud we have accordingly

6.	$\mu_{\text {Flexure }} \ldots$	$\cdots \pm 1.7$
7.	Flexure	. ± 07
8.	Change in the pendulums	± 3.0
	Sum of squares	$12 \cdot 4$
	Total p.e.	± 3.5

(Errors 3, 4 and 5 above are functions of the differences in temperature and density and have not to be applied a second time).

Hence

$$
\begin{aligned}
\mathbf{E} & =\sqrt{9 \cdot 4+12 \cdot 4} \\
& =\quad \pm 4 \cdot 7
\end{aligned}
$$

For the other seamons the figtures are the same with the exception of μ_{1} which has the following values:-

$$
\begin{aligned}
& \text { For 1904-05 } \mu_{n}= \pm \frac{5 \cdot 7}{\sqrt{8}}= \pm 3.3 \text { at a field station } \\
& \mu_{0}=\quad \pm 2.4 \text { at Dehra Dún } \\
& \text { For 1905-06 } \begin{array}{l}
\mu_{0}= \pm \frac{4.0}{\sqrt{3}}= \pm 2.4 \text { at a field station }
\end{array} \\
& \mu_{1}=\quad \pm 17 \text { at Dehra Dún } \\
& \text { For 1906-07 } \mu_{0}= \pm \frac{2 \cdot 1}{\sqrt{3}}= \pm 1 \cdot 2 \text { at a field station } \\
& \mu_{n}=\quad \pm 0.9 \text { at Dehra Dún }
\end{aligned}
$$

Hence for the season 1904-05 $\quad \mathrm{E}=\sqrt{14 \cdot 5+22 \cdot 3}= \pm 6 \cdot 1$
For 1905-06

$$
E=\sqrt{9 \cdot 4+12 \cdot 4} \quad= \pm 4.7
$$

For 1906-07

$$
\mathbf{E}=\sqrt{5.1+10.3}= \pm 3.9
$$

These values of E are given in terms of the seventh decimal place as unit.
Having now evaluated the average probable errors of the differences in the times of vibration at the Base and at a field station for each season, it remains to show the corresponding probable errors of the deduced values of g.

The equation whence g at a field station is deduced is
whence

$$
\begin{aligned}
\mathrm{s}^{8} g=\mathrm{s}_{0}^{\mathrm{a}} g_{0} & =k \\
g & =\frac{k}{\mathrm{~s}^{\mathbf{8}}} \\
\mathrm{d} g & =-\frac{2 k \mathrm{ds}}{\mathrm{~s}^{3}}
\end{aligned}
$$

For the evaluation of $\frac{2 k}{8^{8}}$
we may pat

$$
\text { and } \begin{array}{rlrl}
& g_{0} & =979 \\
& \text { Hence } & \frac{2 k}{\mathrm{~s}^{3}} & =\frac{2 \times 979}{0.507} \\
& =3862 \\
& & & \\
& \text { if } \mathrm{d} s & =1 \times 10 \dashv 7 \\
& \mathrm{~d} g & =0.000386
\end{array}
$$

$$
s_{0}=s=0.507
$$

For the season ending in June 1904, $\quad E= \pm 4.7 \times 10$-10 Therefore
p.e. of $g= \pm 0.0018$

For the season 1904-05
Hence
For the season 1905-06
Hence
For the season 1906-07
Hence

$$
\begin{aligned}
\mathbf{E} & = \pm 6.1 \times 10^{-7} \\
\text { p. e. of } g & = \pm 0.0024 \\
\mathbf{E} & = \pm 4.7 \times 10^{-7} \\
\text { p.e. of } g & = \pm 0.0018 \\
\mathbf{E} & = \pm 3.9 \times 10^{-7} \\
\text { p.e. of } g & = \pm 0.0015
\end{aligned}
$$

These are the probable errors based on the observed value of g at Dehra Dún, viz., 979.063; they do not include the error with which that value may be burdened.

CHAPTER VII.

In the tables in which the results of each season's work are summarised the last column contains the value of the quantity ($g_{0}{ }^{\text {" }}-\gamma_{0}$.)

This quantity is the difference between the observed value of the force of gravity and that which theory would lead us to expect. In computing the corrections required for the reduction to sea level the density of the earth's crust, including all rock above sea level, has been assumed to be $2 \cdot 8$ and the mean density of the earth to be $5 \cdot 6$. If at any station $\left(g_{0}^{\prime \prime}-\gamma_{0}\right)$ is a positive quantity it shows that the density of the strata underlying that station is greater than $2 \cdot 8$, and if it is negative that the density is less.

What the actual densities are we cannot say unless we know the depths to which the excesses or defects extend but we can indicate the total amount of matter of density $2 \cdot 8$ which must be added to, or subtracted from, that which is visible in order to produce the observed deviation from the normal.

The attraction of a circular disc on a point in its axis, situated at a height c above its upper surface, the radius of the disc being r, and its thickness h is

$$
K\left\{h+\sqrt{r^{8}+c^{8}}-\sqrt{r^{8}+(c+h)^{8}}\right\}
$$

If r be very large compared with c and h this becomes $K h$, that is to say the attraction depends on the thickness of the disc only, and is independent of the height of the station above it.

The value of K, when h is expressed in feet and the attraction in centimetres per second, and the density of the disc is takeu to be half the mean density of the earth, is 0.000035 .

Thus if we have to account for a deficiency in gravity of $0.001 \mathrm{c} . \mathrm{m}$. we may say that there is a deficiency in the matter underlying the station equivalent to a disc of indefinitely great radius the thickness of which is

$$
0.001 \div 0.000035 \text { or } 28.6 \text { feet. }
$$

In this way we can compute the amount of the excess or defect of matter underlying each station, obtaining the thickness of what has been called by Professor Helmert "Die Ideelle Störende Schicht". Adding or subtracting this thickness to or from the known height of the station we obtain an ideal height which would be that of the station if the strata underlying it were expanded or compressed, as the case may be, until they attained a density of 2.8 .

This is only approximately true for the corrections to the observed g on account of the masses between the station and sea level, $\left(g \frac{3}{4} \frac{\mathrm{~h}}{\mathrm{~K}}\right)$ and O have been computed on the assumption of a density of $2 \cdot 8$, whereas the very facts that we are dealing with show that this was not the actual density. Furthermore, when we have several stations in a small area and we find that the deficiencies to be accounted for differ by considerable amounts, the method of explaining the deficiencies by
imagining each station to have under it a disc of indefnite extension and of a thickness proportional to the value of ($g_{0}{ }^{\prime \prime}-\gamma_{0}$), breaks down, for we should have parts of two or more discs of different thicknesses under each station.

Nevertheless, since the central portion of the underlying disc is of much greater importance than the outer parts, the ideal heights give some idea of what would be the state of things if the crust were homogeneous and I have therefore drawn up a table to exhibit the actual heights, the thickness of the disturbing discs, and the ideal heights. In this table the stations have been grouped in regions.

Actual and Ideal Heights of Stations.

Station		Actual Height feet	$\begin{gathered} g_{0}{ }^{\prime \prime}-\gamma_{0} \\ \text { c.m. } \end{gathered}$	Thickness of disturbing disc feet	Ideal Height feet
	Dehra Dun and Great Arc.				\bullet
Mussooree (Dunseverick)	..	7129	- 0.115	- 3289	$+3840$
" (Camel's Back)	\cdots	6924	- 0.110	- ${ }^{1}+3$	$+3781$
Rájpur	...	3.321	- 0.124	- 3546	- 225
Kálsi	...	1684	- 0.098	- 2800	- 1116
Dehra Dún	\ldots	2239	- 0.126	- 3600	- 1361
Fatehpur	-••	14.34	- 0.100	- 2857	- 1423
Asarori	...	$2+67$	- 0.112	- 3203	- 736
Hardwár	...	949	-0.114	- 3260	- 2311
Mohan	...	1660	-0.104	- 2974	- 1314
Roorkee	\cdots	867	- 0.107	- 3060	- 2193
Nojli	\cdots	879	- 0.095	- 2717	- 1838
Kuliána	\cdots	810	- 0.058	- 1659	- 849
Meerut	...	734	- 0.027	- 772	- 38
Gesupur	\cdots	691	- 0.020	- 572	+ 119

N. E. Longitudinal Series.

Sandakphu	...	11766	-	0.150	-	4286	+	7480
Darjeeling	...	6966	-	$0 \cdot 143$	-	4090	+	2876
Kurseong	\cdots	49^{13}	-	0.130	-	3718	+	1195
Siliguri	...	387	-	$0 \cdot 137$	-	3914	-	3527
Julpaiguri	...	268	-	$0 \cdot 096$	-	2746	-	2478

Calcutta Meridional Series.

Kezarbari	204	- 0.043	- 1230	- 1026
Rainchandpur ...	132	$+0.001$	+ 29	$+161$
Kismapur	113	$+0.033$	+ 944	+ 1057
Chatrs ...	64	+ 0.009	+ 257	$+321$

Actual and Ideal Heights of Stations-(Continued).

Station		${\underset{f e e t}{ }}_{\text {Actual Height }}$	$\begin{aligned} & g_{0}^{\prime \prime}-\gamma_{0} \\ & \text { c.m. } \end{aligned}$	Thickness of disturbing disc feet	$\begin{aligned} & \text { Ideal Height } \\ & \text { feet } \end{aligned}$
Other Himalayan and Sub-Himalayan Stations.					
Simla	...	7043	- 0.119	- 3403	$+3640$
Kilka	...	2202	- 0.085	- 2431	- 229
Pathánkot	...	1088	- 0.179	- 5114	- 4026
Plains of the Punjab.					
Ludhiána	...	835	- 0.048	- 1373	- 538
Mian Mir	...	708	$+0.004$	+ 114	+ 822
Ferozepore	...	647	+ 0.006	+ 172	+ 819
Montgomery	...	357	+ 0.003	+ 86	+ 643
Multán	...	404	- 0.045	- 1287	- 883
Dora Ghazi Khan	...	397	- 0.088	- 2517	- 2120
Baluchistan and Sind.					
Quette	...	5520	- 0.139	- 3971	+ ${ }^{5} 59$
Mach	...	3522	- 0.117	- 3346	+ 176
Sibi	...	4.34	- 0.116	- 3.318	- 288
Jacobabad	...	183	+ 0.031	+ 887	+ 1070
Coast Stations.					
Madras	\cdots	20	$+0.014$	$+400$	+ 420
Colaba	\cdots	34	+ 0.088	+ 2514	+2548
Cuttack	...	92	+ 0.029	+ 829	+ 921

Plates IV, V, VI and VII have been drawn to show graphically the difference between the visible section of the earth's surface and the ideal section.

The upper diagram in each plate shows the actual or visible section, that is to say the ordinates represent the actual heights of the stations above sea level. The middle diagram shows the thickness of the disturbing disc, and the third shows the ideal section, that is to say, the ordinates in it are the sums of the corresponding ordinates of the other two.

Owing to the lengths of the sections represented being widely different, it has not been possible to draw them all on the same scale, but the proportion between the horizontal and vertical scales in Plates 1V, V and VI is the same, the vertical scale being about 40 times as large as the horizontal*. Plate VII covers a much less horizontal distance and in it the exaggeration of the vertical is not so great, being ouly about 10 to 1 .

[^17]In these diagrams the first point to be noticed is that in and near the foot-hills there is always a great deficiency in the force of gravity, the disturbing disc is always thick; but it is also to be remarked that under hills its thickness in no case equals the height of the hill and it does not increase with the height of the hill. Thus in Plate IV the defect is almost constant from Siliguri to Sandakphu, in Plate VI from Sibi to Quetta aud in Plate VII from Asarori to Mussooree.

This constancy in the defect leads to the result that in the ideal section there is a deep dip at the foot of hills and this dip has an jmportant bearing on the deflections of the plumb-line.

In Plate IV a dotted line has been drawn on the diagram of the ideal section to show the way in which the deflection of the plumb-line in the meridian varies.

Judging by the visible section it seems impossible to believe that at Ramchandpar and Kesarbari the plumb-line is deflected to the south; but if to account for this observed fact we assume that the visible mass of the Himalayas is wholly compensated by deficiencies of density, we are equally at a loss to account for the appearance of a northerly deflection at Jalpaiguri which rises with great rapidity to a maximum at Kurseong.

The great dip between Kesarbari and Kurseong explains the observed effects quite satisfactorily. At Kesarbari there is nearly a balance between the attraction of the mass to the south aided by the dip to the north, and that of the far greater, but more distant Himalayas to the north. At Jalpaiguri part of the dip is already to the south tending to counteract the effect of the remainder that still lies to the north, the Himalayas are more powerful than the mass to the south and the plumb-line is therefore deflected in their direction.

At Kurseong the dip and the Himalayas acting in harmony produce the largest deflection that has yet been observed in India.

On receding from the hills in a direction more or less at right angles to them the force of gravity approaches the normal value and finally exceeds it, as at Kisnapur in Plate IV, Mián Mir and Montgomery in Plate V and Jacobabad in Plate VI.

The observations detailed in Chapter V were not carried sufficiently far south to ascertain whether this rule holds good in that region also, but it is probable that it does, for, as the first part of the table shows, the deficiency in $g_{0}{ }^{\prime \prime}$ was growing steadily less, and at Gesupur was only about a fifth part of what it was at Nojli.

The investigation of the position of the locus of maximum values of $\left(g_{0}{ }^{\prime \prime}-\gamma_{0}\right)$ is an important part of future pendulum operations.

Plate VIII shows the position of the stations near the Siwaliks and Himalayas the observations at which were given in Chapter V. The results are shewn in the first part of the table and in Plate VII. The noteworthy point is here the fact that the defects do not seem to be affected by the presence of the Siwalik range. There is for instance, no additional defect at Mohan or Hardwar. The difference from the normal seems to diminish with perfect regularity from Dehra Dún to Gesupur.

Throughout this area similarly placed stations have similar defeets, though at western stations they are generally greater than at eastern ones.

Thus

at Kalsi the defect is 0.098	at Rájpur	0.124	
at Fatehpur	0.100	at Dehra Dún	0.126
at Mohan	0.104	at Hardwar	0.114
at Nojli	0.095	at Roorkee	0.107

These variations are however probably local.

INDEX OF THE PENDULUM STATIONS IN INDIA.

192
INDEX OF THE PENDULUM• STATIONS IN INDIA-(Continued).

INDEX OF THE PENDULUM STATIONS IN INDIA-(Continued).

Jalpaiaubi (Ctd.)		$!$						Page
		Details of the	Observations	84
		Value of g	105
Kallana	...	Dr. Hecker's	Observations	106
		Description	146
		Details of the	Observations	153
Kalisa	...	Value of g	173
		Description	-	110
		Details of the	Observations	118
	...	Orographical	Correction	136
Kalas		Value of g	143
		Description	o.	148
		Details of the	Observations	157
		Orographical	Correction	169
Kisarbari	...	Value of g	173
		Description	75
		Details of the	Observations	85
Kisnapur	...	Value of g	105
		Description	...	\cdots	-	77
		Details of the	Observations	\cdots	88
Kurseona	...	Value of g	105
		Description	77
		Details of the	Observations	\cdots	88
		Orographical	Correction	99
Ludhiana	...	Value of g	105
		Description	111
		Details of the	Observations	\cdots	118
		Value of g	148
Mace	...	Description	115
		Details of the	Observations	.."	126

INDEX OF THE PENDULUM STATIONS IN INDIA-(Continued).

INDEX OF THE PENDULUM STATIONS IN INDIA-(Continued).

Mussooree (Ctd.) (Dunseverick)	Value of g...	PıaI
Nowli	Description	146
	Details of the Observations	152
	Orographical Correction	163
	Value of g...	173
Pathaniot ...	Description	113
	Details of the Observations	121
	Orographical Correction	138
	Value of g	143
Quetta	Description	116
	Details of the Observations	126
	Orographical Correction	142
	Value of g...	143
Rajpur	Description ...	\cdot	..	\ldots	...	148
	Details of the Observations	158
	Orographical Correction	171
	Value of g...	173
Ramchandpur...	Description	\ldots	...	76
	Details of the Observations	86
	Value of g...	105
Roories	Description	-	\cdots	146
	Details of the Observations'	151
	Orographical Correction	-	163
	Value of g...	173
Sandakpio ...	Description	-	...	\cdots	78
	Details of the Observations	89
	Orographical Correction	...	\cdots	\cdots	\cdots	108
	Value of g...	..-	105

196
INDEX OF THE PENDULUM STATIONS IN INDIA-(Continued).

The table showing the real and ideal heights of all the stations is to be found on pp. 188, 189.

MAP Showing the PENDULUM STATIONS Seasons 1904 to 1907

CHATRA to SANDAKPHU

\sin os os ot 08.08 of 0 or or ofin

SECTION
 from
 JACOBABAD TO QUETTA

Miles $\underset{\sim}{0}$

- Vertical Scale ,

LABGE SOALE SECTION
from
NOJLI to MOSSOOREE

Map showing the PENDULOM STATIONS in the vicinity of Dehra Dun. plate vill

-

$$
4
$$

89078548336

B89078548336A

[^0]: * An abridged account of these observations appeared in the Proceedings of the Royal Society -4. Fol. 78.

[^1]: * A drawing of the instrument is to be found in Plate K.-III, Fig. 4, Vol. V of "The Account of the Operations of the Great Trigonometrical Survey of India."

[^2]: * This value has been adopted by Professor Helmert in his "Bericht über die relativen Messungen der Schwerkraft mit Pondel-apparaten" which appears in the report of the Geodetic Conference of 1900-vide page 324.

 It is based on the preliminary result of the determination of g at Potsdam, viz:-981.274.
 Cf. also Appendix No. 6 to the U.S. Coast and Geodetic Surrey Report for 1901, page 355.

[^3]: - Quasterly Journal, Geological Society, Volume XL, page 724 (1884) and Volume XLI, page 524 (1885).

[^4]: - Geology of London, Volume II, page 73.

[^5]: * J. Barrow. Proc. S. Wales Inst. Eng. Volume XI, pure $3: 66$ and Geology of London, Volume II page 135 (188)

 This and the other deep wells referred to are shewn in Figure I.
 \dagger Prestwich and Moore, Quarterty Journal Geological Society, Volume XXIV, page 902 and Geology of Lowdon Volume II, page 165, (1889).
 \ddagger Geology of London, Volume II, page 224. (1889).
 § Geology of London, Volume II, page 66. This is not the deep boring referred to later on.
 II Quarterly Journal, Geological Society, Volume XXXIV, page 913 (1878).
 Geology of London, Volume II, page 68.

[^6]: * Some Middlesex Well-sections. Trans: Brit: Assoc: Water-works Eng., Volume II. 1897.
 \dagger Geology of London, Volume I. page 485. 1889.

[^7]: - I have been unable to ascertain the height of the site of the boring above Ordnance Datum. This figure is calculated on the assumption that the height is betweon 50 and 60 feet.

[^8]: * J. Francis: Report, Brit: deooe : 1895, page 441.

[^9]: * A specimen dried at $105^{\circ} \mathrm{C}$. gave a specific gravity of $2 \cdot 739$ in the oil.
 \dagger After being in vacuo all night: all the figures reluting to No. 8 in the table are probably unreliable.
 \ddagger After being in vacuo for 48 hours.
 Flint-layers may be estimated to constitute about 1\% per cent of the Upper Chalt.
 || The figures calculated from the table on page 37.

[^10]: - Comptes-rendus de la Treizième Confórence Générale de l Association Géodésique Internationale, 1900. p. 184.

 It is possible that there is some mistake about the place in which the observations of 1897 were made, for the authoritios at St. Xavier's Colloge, though thoy knew all abont the observations of 1893, had no recollection of any in 1897.

[^11]: * As no stars wore observed on May 28th the Pendulum obsorrations of 27th, 28th and 29th are troated an one out

[^12]: * A block 1 mile high occupying 30° of a zone the inner radius of which is 100 miles and the outer infinite, exerts a vertical attraction of $0 \cdot 000,077 \mathrm{C}$. G. S. on a station at sea level at the centre of the zone.
 † Cf. Vol. V. Op. G. T. S. page [189] et. seq. and "Die Schworkraft im Hochgebirge" by Prof. F. B. Helmert, p. 29.

[^13]: * Illuminated pivot east.

[^14]: - Vide Vol. V Op. G. T. S. Chapter II, Para 5.

[^15]: - Tide Prof. Omori's map in the "Publications of the Earthquake Investigation Committice" No. 24, Tokjo, Јapan, 1907.

[^16]: * In two caces special corrections were first applied,

[^17]: These diagrams were originally drawn on the scale 30 miles to 1 inch horizontal and 4000 foet to 1 inoh vertical, and they wore afterwarde reduced by photography to fit the page.

